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Abstract—Physical Unclonable Functions (PUFs) are widely
studied for the security of devices in the largely heterogenous
Internet-of-Things ecosystem. The need for low-power and low-
cost yet robust and reliable security systems is of prime im-
portance in resource-constrained environments like smart vil-
lages. Using PUFs as a security primitive has the limitation
of environmental effects that lead to bit flipping in the PUF
response, the challenge in using PUFs is to overcome the bit
errors without adding to the area overhead or computational
overhead. This research proposes a novel bit error detection
and correction algorithm implemented using Federated Learning
(FL). The error detection and correction model uses the N-
gram concept of Natural Language Processing (NLP). The FL
model is implemented on Flower Al, the global model gets the
locally trained model’s parameters, updates itself, and shares the
updated models with all the local models. At the edge, the use of
FL for model training and updating enhances the efficiency of the
authentication system that uses PUF Challenge-Response Pairs
(CRPs), reduces the area overhead and power consumption, and
improves the security of the PUF-based authentication system.

Index Terms—Physical Unclonable Functions(PUFs), Smart
Village, Collaborative Edge Computing, Federated Learning,
Secure Authentication, Natural Language Processing

I. INTRODUCTION

According to the statistics on IoT devices, it is expected
that the number of IoT devices is expected to triple from 2020
to 2030, estimating the numbers to be in billions. Based on
the emerging applications in areas such as smart healthcare,
manufacturing, automotive industries, autonomous vehicles,
gaming, and so on, there will be huge data generation that
will exhaust the existing infrastructure. With the rise of time-
sensitive applications, the processing is moving closer to the
user edge. In the future, it is forecasted that the Edge Data
Centers (EDC) could move closer to the data sources [1].

EDCs in a collaborative environment are a resourceful
solution for faster computing with reduced latency and reduced
load on the processors, through task offloading. Security of the
EDC during load balancing requires a robust authentication
and authorization system. The EDCs closer to user devices
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demand a security application that is low power consuming
and computationally accommodatable. A suitable authoriza-
tion and authentication system using PUFs was proposed in
the research [2].
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Fig. 1: Overview of Federated Learning Structure.

Although PUFs have been long studied as a robust solu-
tion for device identification and authentication in security
applications, they are not without challenges. One of the
prime challenges in implementing PUF is reliability, only
the stable PUFs are considered secure, the main cause for
instability in PUFs is environmental effects, the variations in
the environment cause the bits in the PUF response to flip, thus
reducing the stability and reliability of the PUF. To address this
issue a novel ML-based PUF bit error detection and correction
was proposed in the research [3]. This model is suitable for
implementation at the edge of an IoT ecosystem that uses
PUFs for authentication and authorization as it consumes low
power, is computationally less intensive, and does not increase
the area overhead.



Machine Learning has been a valuable enabling technology
to use at the edge for developing security applications, it helps
make intelligent and informed decisions concerning attack
detection and prevention and mitigates security and privacy
threats. ML can be leveraged to develop models to prevent or
detect attacks like Distributed Denial-of-Service (DDoS), In-
trusion, Eavesdropping, Malware, Man-in-the-Middle, Phish-
ing, Spoofing, and so on [4]. Taking forward the capacity
of ML is the emerging method FL that helps build models
without exposing private data. FL with the capability of
deploying and training on user devices where data is generated
reduces the communication overhead and preserves privacy.
FL allows the participation of a large number of devices
enabling collaborative learning that will help in providing
cloud-like computing capabilities at the edge [5].

FL structure is shown in Figure 1, there are 3 distinct
frameworks for FL, it can be Cloud-based FL, where the
model aggregation takes place at the cloud servers, Edge-based
FL where the model aggregation is done at the edge servers
without cloud dependency, and a hierarchical framework that
involves both cloud and edge servers based on the distribution
of aggregation. ML models that are low on processing and
power requirements are most suitable for aggregation at the
edge servers. The challenges in using FL at the edge lie
in tackling the heterogeneity of the ecosystem, handling the
volume of data, frequency of model updates, and so on. One
must design the model in a way that avoids the communication
overhead and uses sufficient data for model updates. This
research uses the FL model for collaborative deployment and
updation of the ML model for bit error correction, which
overcomes the challenges.

II. RELATED PRIOR RESEARCH

The security and privacy of PUF CRPs need to be consid-
ered when designing PUF-based authentication system. The
CRP dataset needs to be stored and the data is looked up
when authentication requests come in. The dataset is a must
for a verifier that identifies the corresponding response for
a given challenge and rightly verifies the requesting device.
The dataset needs to be secure and prevent any illegal access,
that will compromise the security of the whole application.
The CEC ecosystem that uses a PUF-based authentication
system requires the CRP dataset to be stored in the partici-
pating servers, in scenarios like load balancing when a mutual
authentication between servers or EDCs is needed on the go.
However, the local availability of CRP datasets in multiple
servers or EDCs could become a security threat. To address
this issue research proposes the use of a Certificate Authority-
based PUF authentication system that removes the need to
store dataset in every EDC in CEC [6].

Error correction codes and Fuzzy extractors are largely
used for bit error correction to increase the reliability of
PUFs. These methods need publicly available helper data
which is vulnerable to data manipulation attacks. A repetition
code-like error correction protocol using machine learning is
proposed in the research [7] that uses simulation challenges,

the mechanism can predict corrected responses with 100%
probability.

To improve the reliability of SRAM PUF, a novel
lightweight one-layer convolution scheme is proposed in the
research [8]. The scheme uses verification matrices and com-
pares the verified and unverified matrix to generate PUF
response. The reliability of the PUF responses reached upto
100%.

Studies have shown that ML techniques are effective in
PUF-based authentication systems where they can be em-
ployed for error correction, simulated challenge, response gen-
eration, and so on. It can be said that ML can greatly contribute
to enhancing security and privacy, reducing area overhead,
and computation overhead. FL framework allows a network of
devices to train a model without the need for centralized data,
analysis of the performance of FL at the edge with various
types of system heterogeneity, statistical heterogeneity, system
statistical heterogeneity, and communication bandwidth, can
be used to study the impact on model convergence, the
knowledge of which can be used for optimizing the FL systems
[9]. Combining the aspects of ML and using the FL framework
the bit error correction model can be further enhanced to suit
the needs of edge computing in a network while preserving
data privacy, which is crucial for the security of the CRP
dataset.

The following Table I shows the comparative study of
various applications that use the FL framework. All these
various research uses different datasets related to healthcare,
medical, Image classification, and Intrusion detection, and
apply FL for better results in detection and classification with
enhanced data security and privacy.

III. NOVEL CONTRIBUTIONS OF CURRENT RESEARCH

Enhancing the reliability of the PUF-based secure authen-
tication and authorization system is the prime focus of this
research. This research uses a 64-bit Arbiter PUF for CRP
generation [15]. The use of Machine Learning (ML) and
Artificial Intelligence (Al) to support the security applications
not only improves the security it also makes the system
powerful against external attacks by providing attack detec-
tion and prevention options through various protocols across
several levels of the IoT infrastructure. In the process of
leveraging the benefits of ML and Al and reinforcing the
PUF-based authentication system, the following are the novel
contributions of the current research:

o Exploring FL for edge computing in a collaborative

environment

o FL model with model training and deployment which is

efficient in computation and power consumption

e Proposing a FL based framework for PUF bit error

detection that uses ML algorithm

o ML model training using NLP approaches

o Global Model aggregation through parameters received

from local models

¢ Global and Local Model training and testing on edge

devices for computational efficiency



TABLE I: Comparative Table for State-of-the-Art Literature.

Research Year ML Algorithm Dataset Metrics
Karim et. al. 2023 RainForest WEKA-Hypothyroid Accuracy, Precision, Recall, F1 Score
[10]
Jain et. al. [11] 2023 SGD Adobe Stock Accuracy
Korkmaz et. al. 2022 Inception-v3 Medical Image Dataset Accuracy
[12]
Chen et. al. 2020 GRU (gated Recurrent Unit) and SVM KDD CUP99 Accuracy, F1 Score
[13]
Mahadik et. al. 2024 CNN CICDDo0S2019 Accuracy
[14]
Current 2024 K-mer Sequence 100K PUF Response Dataset Accuracy
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computing as we know is growing to get processing closer to
the user device, and the attributes of FL are suitable for such
an environment. Based on the data distribution FL is classified
into Horizontal FL. (HFL), Vertical FL (VFL) and Federated
Transfer Learning (FTL) [16].

e Horizontal FL: The database has same feature space but
different sample spaces, the clients can use the same Al
or ML model to train data locally.

o Vertical FL: The database has different feature space but
the sample space is same, enable shared Al or ML model
training.

o Federated Transfer Learning: The database has different
feature space and different sample space, enables to train
data aggregated from multiple clients.

FL applications in an edge computing environment include
computation offloading and content caching, Malware and
Anomaly Detection, Task scheduling, and resource allocation.
Some of the challenges that FL at Edge poses are communi-
cation and computation efficiency, heterogeneity management,
privacy and security preservation, client selection, and resource
allocation [17].

Fig. 2: Federated Learning Framework for Bit Error Correction
in PUF enabled Authentication System.

An FL framework for edge that can be used for PUF bit
error correction is shown in Figure 2. The data-generating
devices are at the edge which are using PUF modules for
authentication and authorization, in a CEC the EDCs can be
replaced as the local devices. the local devices generate local
data and save it locally as their dataset, each participant can
train their local model on their data and send parameters to the
global model, the global model aggregates the clients, updates
the global model, and sends the updated model to local devices
for updation.

V. PROPOSED FEDERATED LEARNING FRAMEWORK

The proposed FL framework is shown in Figure 3. The
client devices are the participants that use PUF for device au-
thentication and authorization. In the use case for this research,
we consider EDCs as the participants in a collaborative envi-
ronment. Each PUF module generates its own PUF responses



for a given set of challenges, each module will have its own
CRP dataset represented in the figure as Dataset A, Dataset B,
and so on. Each dataset is trained using a local model using K-
mer sequencing and Count Vectorization, for classification we
are using MultinomialNB. The local ML model is responsible
for generating the vectors for the extracted features from the
PUF response and classifying them. The local model classifies
the responses into unique classes based on which it is trained
to predict the class of any new response. Flower Framework
is used to implement the federated client-server model [18].
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Fig. 3: Proposed Federated Learning Framework for Machine
Learning based PUF bit Error Correction System.

The local model is further modified to detect responses with
errors, predict the correct class, and correct the response as
shown in Figure 4.
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Fig. 4: Local Machine Learning Model for PUF Bit Error
Correction.
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Whenever a new challenge is used in any one of the clients,
and a new response is generated the local parameters of the
client are sent to the global model and the trained global model
will send updates to all the local models. In this way, the other
clients will be updated to correctly predict the class of the new
response if the same challenge is given to them. The workflow
of the proposed FL framework is as follows:

e Initialization: The Server initializes the global model

hosted in CPU
e Client Selection: The Server can select to train on all
available clients of a subset of the clients, maximum
number of clients available in this research is 10.

e Model Distribution: The participating clients receive a
global model update and the same is made available for
other clients.

e Local Training: The local ML model is trained using the
CRP dataset locally available for each participating client.
The model is trained over certain epochs to improve
performance and KFold cross-validation is done.

o Model Aggregation: The updated models from clients are
sent to the server after local training.

o Model Averaging: The central server aggregates the
model by averaging the parameters received from the
clients.

The operation of the Client-Server model of the FL system
is split into two parts, local training using the ML algorithm
and Federated averaging using the FL framework for model
updation. The local training steps are shown in Algorithm 1.
Each participating client is trained on a local 10K response
dataset.

Algorithm 1: Local Model Training

Input: 64-bit Binary Response Dataset stored in CSV
file
Result: Trained model and predictions

. Read CSV File;

. Convert Binary data to string;

. Label the data;

. Apply K-mers of size 6;

. Use CountVectorizer() for feature extraction;
. Split data into train and test set;

. Classify using MultinomialNB();

. Predict;
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The process of FL is discussed as the client-side and server-
side processes. The Algorithm 2 shows the steps involved in
the server-side model.

Algorithm 2: Server Side Evaulation

Input: Number of Clients, Model Parameters
Result: Aggregation and Averaging

1. Set the Number of clients;
2. Start flower server;
3. Request initial parameters from random client;
4. if received parameters then
Evaluate initial global parameters;
Evaluate loss and accuracy;
Start fit;
end
5. update the global model;
6. Send updated global model to all clients;

The process involved in the client-side model training and
evaluation is shown in Algorithm 3.

The process of local training, sending parameters to the
server, aggregation, and new model updates are repeated over
several counts until the model converges and performs well
across all the clients.



Algorithm 3: Client Side Evaluation

Input: Response dataset CSV file
Result: Updated Model

1. Load data;

2. Preprocess data for client_n;

3. Train Local model;

4. if Trained then

Start flower client;

Send model parameters to server;
Wait;

end

5. if received updated model from server then
Start fitting;

Evaluate model;

End model update;

end

V1. EXPERIMENTAL SETUP

The FL framework proposed in this research is Horizontal
Federated Learning (HFL), where all clients train a global
FL model using their local dataset. The feature space of each
dataset is the same, but the sample space is different. Flower
provides the infrastructure to perform FL in an easy, scalable,
and secure way, allowing federation, analytics, and evaluation
of any ML framework.

A 64-bit Arbiter PUF architecture using PUFs. PYNQ™ Z2
FPGA which is based on Xilinx Zynq C7Z2020 SoC, Xilinx
BASYS3 FPGA was used to build the PUF. A 100K dataset
of PUF responses is generated from this Arbiter PUF.

Each participating client is individually trained on 10K
unique dataset of responses. The graph in Figure 5, shows
the size of data consumed by each of the 10 clients. To suit
the HFL model, the feature space for local models is the same,
that is 506 features, but the dataset for each client is different.
That is, each local model is trained with a different set of
responses.

Fig. 5: Data Partitioning of 100K dataset.

To emulate the edge computing environment, Raspberry Pi 4
is used to act as the 10 clients and the server is the CPU, with
a 64-bit Operating System, Intel i7 processor, 16GB RAM,
and 2.80 GHz.

10K dataset is pre-processed, the binary data is converted
to a string, and K-mers of size 6 are applied to convert the
data to sequences, the classifier groups the sequences into
unique classes. The classification of the sequences for the 10K
dataset for Client_1 is shown in Figure 6. The sequences are
vectorized using the CountVectorizer class from the scikit-
learn library in Python, the vector-matrix columns represent
the unique n-gram.
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Fig. 6: Classification of sequences into classes.

MultinomialNB classifier is used for classification and the
local model is fitted. The confusion matrix showing the actual
and predicted class is shown in Figure 7.
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Fig. 7: Confusion matrix.

VII. RESULTS AND ANALYSIS

The local model is trained on a 10K dataset, 80% of the data
is used for training and 20% is used for testing. The model
can efficiently predict classes of new responses and be ready
for client-side evaluation. To test for overfitting of the local
model KFold cross-validation is done to study the performance
over multiple folds. The accuracies obtained over 5-fold cross-
validation are 98.75%, 99.3%, 99.65%, 99.8%, and 99.35%,
with a mean accuracy of 99.37%.



TABLE II: Comparative Table of Results for State-of-the-Art
Literature.

Research Year ML Algorithm Accuracy(%)
Karim et. al. 2023 RainForest 0.99
(10]
Jain et. al. [11] 2023 SGD 0.94
Korkmaz et. al. 2022 Inception-v3 0.8-
[12] 0.99
Chen et. al. 2020 GRU (gated Re- 0.99
[13] current Unit) and

SVM
Mahadik et. al. 2024 CNN 0.99
(14]
Current 2024 K-mer Sequence 0.99
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After training the local model the client and server are set
up for FL using the Flower FL system.

The server-side evaluation results show a total of 3 server
rounds are repeated in fitting the model parameters from 10
clients with O failures. The total time taken by the server for
fitting the global model is 154.62. The server evaluation is
increased for 10 rounds, time taken to complete is 202.32s.

The client-side evaluation shows an average of 99.45%
accuracy with 0.0 loss for all 10 clients. The total time taken
for local model training with initial parameter update is 6s,
total time taken for model update over 10 rounds is 130.42s.

The idle power of the Raspberry Pi was an average of 3.7W,
and the average power consumed for local model training was
4.5W.

A comparison of the results from various research listed in
the comparative table for state-of-the-art Literature is shown
in Table II. The accuracy of the baseline models used in an FL
framework is high and is used by a variety of IoT applications
handling different datasets.

VIII. CONCLUSIONS

FL framework is easy, scalable, and secure and enables the
use of any ML algorithms for local model training. The use of
FL for PUF bit error correction has shown enhanced perfor-
mance and prediction accuracy while providing data privacy
and security. In a collaborative environment authentication
system using PUFs can benefit from this technique where
the CRP dataset need not be stored locally. The accuracy
and power consumption evaluations also prove that the model
is suitable for edge deployment. The model can be further
improved with secure ML model development strategies and
the research can be taken forward to explore applications
like Deepfake detection, Secure Communication, and Secure
Authentication protocols with minimum data exposure.
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