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Abstract—Biometric authentication is pivotal in identifying in-
dividuals with unique physiological or behavioral characteristics.
General recognition methods, such as fingerprint, voice, iris,
and face recognition, are widely used but have significant flaws.
These can be sensitive to spoofing, raise privacy concerns, and
often struggle in certain environments. To fix these shortcomings,
we suggest a novel biometric method: Electroencephalogram
(EEG) authentication. Electroencephalogram (EEG) technology
measures brainwave activity through electrodes and is known
for its reliability, resistance to forgery, and inherent uniqueness,
similar to fingerprints. EEG is particularly significant for liveness
detection, making it a strong candidate for robust biometric
authentication in high-security applications. This study utilizes
a publicly available dataset consisting of EEG data from 109
subjects. The raw data is first scaled and then analyzed using
various classifiers, such as k-nearest neighbors (k-NN), Auto-
Encoder with k-NN, and Convolutional Neural Networks (CNN).
The model’s performance is evaluated under four different con-
ditions based on the subjects’ activities, with the CNN achieving
an authentication accuracy of 92%.

Index Terms—EEG, KNN, Machine learning, CNN

I. INTRODUCTION

It is no longer necessary for users to carry physical tokens
or memorize complicated passwords; instead, their identity
can be verified swiftly and effortlessly with their biometric
data. This ease of use, combined with the heightened secu-
rity biometrics provide, is why they are increasingly being
adopted in various sectors, from banking and healthcare to law
enforcement and border control. Biometrics refers to unique
individual characteristics used to distinguish each person’s
characteristics. In contrast to customary means of authenti-
cation, like passwords, PINs, or security questions, biometrics
are inherently linked to a person’s characteristics.These can
be divided into two main types: behavioral and physiologi-
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cal identifiers. Physiological identifiers typically include iris
recognition, facial recognition, hand geometry, and fingerprint
recognition, while behavioral identifiers encompass traits like
signatures, voice recognition, gait, and handwriting [13].

Biometrics involves analyzing and evaluating these features
to identify individuals, while biometric authentication specif-
ically uses these unique traits for secure identification. One
of the key advantages is that biometric systems can operate
in the background, allowing for continuous authentication,
which is particularly valuable in high-security environments
where constant identity verification is necessary. This ensures
that access is maintained only for the legitimate user without
requiring repeated manual input of credentials. For example,
biometric systems can handle thousands of users in real-time,
making them suitable for environments like large corporations,
public transportation systems, or even nationwide identifica-
tion programs.

When selecting a particular characteristic as a biometric
identifier, several factors must be considered, including dis-
tinctiveness, permanence, universality, measurability, and effi-
ciency [6]. Among physiological identifiers, there are various
attributes such as fingerprint recognition, facial recognition,
iris recognition, and EEG. However, a few methods can be
impacted by external variables like lighting, environmental
conditions, and physical alterations. Fingerprints can be worn
down or damaged, facial features can change due to aging or
facial expressions, and iris patterns may be obscured by glare
or contact lenses. Additionally, these recognition techniques
can sometimes be vulnerable to spoofing or deception, where
artificial representations of the biometric trait are used to gain
unauthorized access.

In contrast, EEG captures brainwave patterns, which are not



easily altered or replicated by external conditions or deliberate
attempts at fraud. EEG data remains consistent regardless
of surface-level changes in physical appearance, making it a
potentially more reliable and tamper-resistant option for bio-
metric authentication [9]. EEG recordings are divided into two
types: invasive and non-invasive. Non-invasive EEG involves
placing electrodes on the scalp, while invasive EEG requires
electrodes to be implanted within the skull. Although invasive
EEG can provide long-term recordings, it carries risks of
infection and other neurological complications. An overview
of EEG-based authentication system is shown in Fig 1.

II. RELATED WORK

The findings from various studies demonstrates the growing
use of EEG-based biometric identification. Chowdhury et
al. [1] studied brain wave-based person authentication and
achieved 83.2% accuracy with a random forest classifier on
a dataset of 21 subjects. Alsumari et al. [2] addressed deep
learning’s constraints in EEG detection by developing a CNN
model with few parameters that achieved a 99% identification
rate using minimal data. Similarly, Bidgoly et al. [3] observed
that, while shallow classifiers are still widely used, they are
progressively being superseded by deep learning approaches
like as CNNs for EEG authentication.

Kamaraju et al. [4] proposed a novel EEG biometric ap-
proach based on EEG data acquired while signing, which
achieved up to 93.4% accuracy using fine KNN classifiers.
Wibawa et al. [10] compared Gaussian NB and SVM clas-
sifiers for EEG-MI user identification, achieving nearly 99%
accuracy with SVM using the CSP method. Taken as a whole,
these research highlight how sophisticated machine learning
methods can improve the precision and dependability of EEG-
based biometric systems.

Yousefi et al. [11] developed an EEG-based biometric
authentication system using machine learning algorithms like
Neural Networks and SVM to address the vulnerabilities of
traditional methods. Using EEG data from 43 participants
and four specific channels, the study achieved a maximum
accuracy of 97.7% with the Neural Network on the F7 chan-
nel. The system utilized Matlab EEGLab for preprocessing
and analyzed Power Spectral Density (PSD) to identify the
most effective EEG channel for authentication. Xu et al. [5],
[12] explored the limitations of current biometric authentica-
tion systems in terms of usability, efficiency, and durability.
They found that alpha brainwaves, particularly during deep
breathing, were the most effective for authentication. Their
experiments showed that SVM and Neural Network classifiers
achieved 91% and 90% accuracy, respectively, highlighting
deep breathing as a reliable method for enhancing alpha brain-
wave activity and improving authentication system reliability.

IIT. BACKGROUND THEORY

Machines can learn from data, spot patterns, and make
defensible conclusions without explicit instructions thanks to
the revolutionary science of machine learning. Its applications

are vast, ranging from enhancing medical diagnostics and op-
timizing financial trading algorithms to enabling autonomous
driving and improving natural language processing. In the fol-
lowing section, we will delve into various classifiers, including
Convolutional Neural Networks (CNN), Autoencoders, and k-
Nearest Neighbors (k-NN), to understand how these models
contribute to the power and versatility of machine learning
systems.

A. Classifier Description

1) k-NN: 1t is a method that belongs to the class of lazy,
instance-based learning algorithms. A data point’s classifica-
tion in k-NN is based on the majority class within its k-nearest
neighbours, where k™ is a user-specified parameter [4].Key
aspects of k-NN include,

o Similarity Measurement: The algorithm assesses the simi-
larity between data points using a chosen distance metric,
such as Manhattan or Euclidean distance.

e Choosing “k”: The selection of the parameter 'k’ is
critical. A large 'k’ can smooth out local variations,
potentially overlooking finer patterns, while a small ’k’
might leave the model prone to noise.

o Decision Rule: To classify a new data point, the class
label that is the most frequent among the k-nearest
neighbors is assigned using the algorithm, as illustrated
in Fig 2.

2) Auto Encoder: Typically used in unsupervised learning
tasks, autoencoders are a kind of neural network. Its primary
objectives include creating efficient representations of data,
which can be utilized for tasks such as feature learning,
dimensionality reduction, and data denoising. The autoencoder
is composed of two key components: the encoder and the
decoder.

Encoder: The encoder compresses the input data into a
lower dimensional space, effectively extracting only the most
essential features needed for subsequent processing. This com-
pressed form, known as the latent representation, is a shortened
copy of original data that retains critical details essential for
appropriate reconstruction.

Decoder: The decoder’s function is to reconstruct the com-
pressed data back into its intial form. The main objective is
to produce an output that closely matches the input data. The
autoencoder’s training goal is to reduce the variation between
the input and the output that has been reconstructed. by
optimizing a loss function that measures this discrepancy. The
process involves backpropagation, which adjusts the network’s
weights to reduce the loss, thereby improving the accuracy of
the reconstruction. This is illustrated in Fig 3.

3) CNN: Convolutional Neural Networks is a form of
deep neural network distinguished by its capacity to learn
complicated patterns through the hierarchical organization of
layers. This approach, often referred to as hierarchical or deep
representation learning, allows CNNs to progressively capture
intricate features from data [2], [7], [3]. CNNs are particularly
effective in tasks such as image recognition because they can
identify spatial hierarchies and patterns within images.CNNs
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comprise several key layers, each serving a specific function
in the network’s architecture as shown in Fig 4.

Convolutional layer: This fundamental layer performs con-
volution operations to the input employing various filters that
move across the data, extracting spatial patterns and essential
features.

Relu: The Rectified Linear Unit layer introduces non-
linearity into the model by converting all negative values in
the feature map to zero, which can improve generalization and
reduce overfitting.

Pooling layer: The Pooling layer diminishes the spatial
dimensions of the feature maps, which helps manage computa-
tional complexity while preserving the most important features
and mitigating the risk of overfitting.

Flatten layer: It turns the 2D feature maps into a 1D vector,
which is necessary to feed the data into fully connected layers
that require one-dimensional input.

Dropout layer: This regularization technique randomly
drops units from the network during training, ensuring the
network does not rely too heavily on specific features thereby
reducing overfitting.

Fully connected layer: In this layer, the features extracted
by previous layers are combined and subjected to nonlinear
transformations. The dense layer at the end of the network
produces the class probabilities, enabling the final classifica-
tion of the input data.

IV. DATASET DESCRIPTION

The dataset includes EEG recordings from 109 subjects,
each lasting one to two minutes. The BCI2000 equipment was
utilized to record these images via a 64-channel EEG system.
Each subject participated in specific motor and imagery tasks
[8].

Initially, participants engaged in two baseline tasks, each
lasting one minute—one with eyes open and the other with
eyes closed. Following this, they performed four experimental
tasks, each repeated three times. The first task required partic-
ipants to move their fists based on a visual target’s position on
the screen: the right fist for a target on the right and the left fist
for a target on the left. The second task involved imagining the
fist movements of the first task. In the third task, participants
opened and closed both fists when a target appeared at the top
of the screen and both feet when it appeared at the bottom.
The fourth task involved imagining these movements. With



160 Hz as the rate of sampling, the data is recorded in the
EDF+ format, adhering to international 10-10 system which
is illustrated in Fig ?? [8].
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Fig. 5. Electrode placement using 10-10 system

V. PREPROCESSING

Key details are extracted from the raw EEG data, including
information on EEG channels and data frames. These details
are crucial for understanding signal characteristics and serve
as the foundation for further preprocessing steps. A train-
test split method is employed to make sure that the perfor-
mance of the model is thoroughly assessed on uncovered
data, which is essential for assessing its ability to generalize.
The datasets for training and testing are normalized using
Sklearn’s StandardScaler, which helps minimize the impact
of differences in feature scales and enhances model conver-
gence and performance. The training and testing datasets are
then concatenated separately, maintaining consistent feature
dimensions for effective model training and evaluation.

Each data point is uniquely labeled, linking it to specific
subject identifiers. For the model to learn and identify patterns
in EEG data that correspond to individual characteristics, this
link is essential. The entire EEG data preparation process
includes key stages such as data loading, preprocessing, split-
ting, scaling, concatenation, and label generation, providing a
comprehensive framework for machine learning tasks.

The study utilized a dataset with recordings from 109 sub-
jects, each recorded using 64 electrode channels. To explore
how dataset size impacts model performance, we tested four
different scenarios: training with data from 25, 50, 75, and
all 109 subjects. This analysis allowed us to evaluate how
variations in the number of subjects influence the overall
effectiveness of our machine learning models.

VI. PROPOSED MODEL

The input data for the CNN model is first reshaped into
a three-dimensional tensor with dimensions (64, 1). This
reshaping ensures consistency across all input samples, making
them suitable for processing through the convolutional layers.
The initial ConvlD layer uses 32 filters, each of size 11, to
process the reshaped input, resulting in a feature map with
dimensions (54, 32), where the spatial dimension has been
reduced to 54, and the number of filters applied are 32. Next,
the model employs a second ConvlD layer, which increases
the number of filters to 64. This layer further processes the
input data, yielding feature maps of size (44, 64).

The increased filter count enables the model to capture
more complicated patterns within the data. Each of these
convolutional layers is paired with a ReLLU activation function,
which is applied to the feature maps to introduce non-linearity.
MaxPooling layers are used to downsample the feature maps in
between convolutional layers. A window size of 2 is employed
for pooling, thereby halving the spatial dimensions of the
feature maps. This pooling operation is applied to maintain
the most significant features while reducing the overall size
of the data. This strategy helps manage the model’s computa-
tional load and focuses on essential features detected by the
convolutional layers.

The model continues with additional convolutional layers,
using 64 and then 128 filters, to process the data further. Each
of these layers uses the ReLU activation function. The feature
maps are flattened into a one-dimensional vector after the pool-
ing and convolutional procedures. This vector is then fed into
the dense layers, which consist of two layers with 25 neurons
each. These dense layers, using ReLU activation, process the
flattened features to extract higher-level information.

The model includes a dropout layer with a rate of 0.2 to
reduce overfitting, meaning that 20% of the neurons are set
to zero, randomly during each training step. This dropout
layer is positioned before the final output layer, which is a
softmax layer. The softmax layer provides the final output by
assigning probabilities to each class label using the charac-
teristics retrieved and processed by the previous layers. This
output facilitates the classification of input data according to
the learned patterns. as shown in Fig 6.

In the kNN classifier, the distance metric used is Eu-
clidean distance, with the value of k set to 5. For the
kNN-AutoEncoder, after scaling the training and testing data,
three convolutional layers with ReLU activation are added
for encoding, featuring 16, 32, and 64 filters, respectively,
each followed by a MaxPooling layer with a down-sampling
factor of 2. The decoder mirrors this structure with three
convolutional layers and Up-sampling layers to reconstruct
the data. This autoencoder effectively removes noise and
highlights essential features before classification with kNN.

VII. RESULTS

The CNN model showed an accuracy of 92% for Task
3 and 91% for Task 5 for 25 subjects. The model con-
sistently delivered strong results across the remaining tasks,
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with accuracies of 88% for Task 4 and 88% for Task 6.
This performance underscores the CNN model’s robustness
and effectiveness in handling diverse classification challenges,
even with a relatively small subject pool as shown in Table I.

The kNN model, on the other hand, reached an accuracy of
54% for Task 5, with other tasks yielding results of 52% for
Task 3, 45% for Task 4, and 47% for Task 6. The Autoencoder-
kNN model achieved an accuracy of 45% for Task 5, with
corresponding results of 44% for Task 3, 43% for Task 4,
and 41% for Task 6. These results suggest that while kNN
and Autoencoder-kNN are capable of performing the tasks,
their outcomes are significantly less impactful compared to
the CNN model as shown in Fig 8.

The CNN model’s performance over the training process,
both the accuracy and error rates across epochs are illustrated
in Fig 7. The accuracy vs. epoch graph demonstrates how the
model’s accuracy improves with training, while the error vs.
epoch graph highlights the reduction in error as the model
learns over time.

When the subject pool expanded to 109, the CNN model

TABLE I
SUBJECT-BASED ACCURACY ANALYSIS FOR DIFFERENT TASKS WITH 64
ELECTRODES
Classifier Task 25 50 75 109
CNN Task-3 | 92 81 74 74
Task-4 | 88 80 78 76
Task-5 | 91 85 79 77
Task-6 | 88 82 79 78
kNN Task-3 | 52 39 29 28

Task-4 | 45 34 30 27
Task-5 | 54 41 30 28
Task-6 | 47 32 32 26
Task-3 | 44 30 14 20
Task-4 | 43 31 24 22
Task-5 | 45 32 25 21
Task-6 | 41 27 24 12

Auto Encoder - kNN

continued to demonstrate its superiority, achieving an accu-
racy of 78% for Task 6. The model’s performance remained
consistent across the board, with accuracies of 74% for Task
3, 76% for Task 4, and 77% for Task 5, further solidifying its
reliability in handling more complex and larger datasets.



The kNN model, with the larger subject pool, recorded an
accuracy of 28% for Tasks 3 and 5, with other tasks yielding
27% for Task 4 and 26% for Task 6. The Autoencoder-kNN
model recorded an accuracy of 22% for Task 4, with other
tasks showing accuracies of 20% for Task 3, 21% for Task
5, and 12% for Task 6. These figures highlight the challenges
faced by the kNN and Autoencoder-kNN models in scaling to
larger datasets, especially when compared to the consistently
high performance of the CNN model.

Overall, the CNN model consistently outperformed the KNN
and Autoencoder-kNN models across all tasks and subject
pools, reaffirming its effectiveness and reliability as the pre-
ferred approach for this classification problem.
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VIII. CONCLUSION

This study has confirmed the reliability of EEG signals as a
reliable method for biometric authentication, achieving a high
accuracy of 92%. This result underscores the potential of EEG-
based systems to provide secure and unique authentication
mechanisms, particularly in applications where traditional bio-
metric methods may be less effective. The strong performance
achieved in this study highlights the viability of EEG as a
promising approach to enhancing user security and privacy.

Looking ahead, we plan to explore a range of classifiers and
deep learning techniques to further enhance the reliability and

performance of authentication using EEG. By experimenting
with various models and methodologies, we aim to enhance
the system’s effectiveness, making it more adaptable to diverse
use cases and more resilient against potential challenges.
Additionally, future research will focus on refining the current
model, optimizing its accuracy, and reducing computational
complexity, thereby contributing to the development of even
more robust biometric authentication systems.
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