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ABSTRACT

Heterogeneous chiplets have been proposed for accelerating high-
performance computing tasks. Integrated inside one package, CPU
and GPU chiplets can share a common interconnection network
that can be implemented through the interposer. However, CPU
and GPU applications have very different traffic patterns in gen-
eral. Without effective management of the network resource, some
chiplets can suffer significant performance degradation because
the network bandwidth is taken away by communication-intensive
applications. Therefore, techniques need to be developed to effec-
tively manage the shared network resources. In a chiplet-based
system, resource management needs to not only react in real-time
but also be cost-efficient. In this work, we propose a reconfigurable
network architecture, leveraging Kalman Filter to make accurate
predictions on network resources needed by the applications and
then adaptively change the resource allocation. Using our design,
the network bandwidth can be fairly allocated to avoid starvation
or performance degradation. Our evaluation results show that the
proposed reconfigurable interconnection network can dynamically
react to the changes in traffic demand of the chiplets and improve
the system performance with low cost and design complexity.
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1 INTRODUCTION

Heterogeneous multi-core architectures, incorporating both CPUs
and GPUs, have found many applications across a spectrum of
computing platforms, including high-performance servers, mobile
devices, electronic gadgets, desktop computers, and gaming con-
soles. In such multi-core systems, chips containing CPU or GPU
cores are integrated into a single die such as Intel’s Sandy Bridge
[8], ARM’s MALI [2], and AMD’s Fusion APUs[11][6]. Both types
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Figure 1: An example of a heterogeneous chiplet.

of cores can collaborate within a unified virtual address space and
programming framework like CUDA and OpenCL. Recent research
also proposed to use different virtual address spaces between CPUs
and GPUs. However, merging distinct CPU and GPU cores into a
same die introduced new challenges in the system design[10].

Chips are usually designed for specific targets, making them
less scalable in addressing diverse resource requirements and thus
becoming less cost-efficient when integrating them. In fact, cer-
tain types of cores can be separately manufactured to meet their
specific requirements, potentially reducing the cost and improv-
ing the yields. As a solution to heterogeneous system integration,
chiplets have been proposed to tackle the rising cost and scala-
bility issue [16]. In a chiplet system, the single die is broken into
multiple smaller chips called chiplets, leading to higher scalability,
easier integration, and better cost efficiency. This approach has re-
cently become a research hot spot with several works investigating
different aspects of chiplet design [4, 5].

Besides the benefits of chiplets, however, there are also chal-
lenges in designing high-performance and low-cost chiplets. The
interconnection network is one of them. Chiplets are usually con-
nected through a shared network where different types of chiplets
compete for limited network resources. Contention between the
chiplets can lead to sub-optimal resource utilization and perfor-
mance degradation if the network resource is not carefully man-
aged.

In this work, we investigate the interconnection network design
for systems consisting of CPU chiplets and GPU chiplets. These
chiplets are connected through a shared network, as depicted in
Figure 1. In this system, a tile can be a CPU-chiplet containing CPU
cores or a GPU chiplet containing GPU cores. The interconnection
network uses a mesh topology and is implemented in the interposer
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Figure 2: GPU performance with different VC allocation ratio
between GPUs and CPUs [GPU VCs:CPU VCs].
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Figure 3: CPU performance with different VC allocation ratio
between GPUs and CPUs [GPU VCs:CPU VCs].

of the package. Each chiplet is connected to the network through a
router that routes data packets generated by the chiplets.

In such a heterogeneous chiplet system containing both CPUs
and GPUs, providing fair sharing of the network resources is chal-
lenging. Conventional CPU applications are latency-sensitive and
have lower Thread Level Parallelism (TLP), while GPU applications
are more sensitive to bandwidth because of their higher TLP[12].
Such diverse traffic patterns make appropriate sharing of resources
a critical challenge in the network design [6, 10]. In this work, we
develop a reconfigurable network architecture to improve resource
utilization. Instead of employing a static method to resolve traffic
contention between CPU and GPU packets, we leverage the Kalman
Filter to predict each application’s dynamic request for network
resources. Then the network resource is dynamically allocated to
each chiplets to meet their demand.

2 MOTIVATION

In heterogeneous computing systems, effective resource manage-
ment not only needs to consider the performance optimization of
computing units (such as GPUs and CPUs) but also needs to pay
attention to the efficiency of the underlying communication net-
work. Data transmission and processing are implemented through
network routing, where the configuration of Virtual Channels (VCs)
and Switch Arbitration (SA) plays a crucial role in reducing con-
gestion, lowering latency, and enhancing data transfer efficiency.
Static or simple dynamic allocation mechanisms are often used due
to their low complexity. However, these mechanisms cannot fully
adapt to rapid changes in computing requirements, resulting in
poor performance in highly dynamic environments. Furthermore,
because GPUs and CPUs have different computing characteris-
tics, running these two types of applications together may lead to
contention for shared network resources and result in suboptimal
system performance. Therefore, it is vital to develop a resource
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Figure 4: Dynamic Traffic Pattern of CPU and GPU chiplets.

management strategy that can accurately predict and dynamically
adapt to these changes.

2.1 Virtual Channel Allocation

We investigated the impact of VC allocation on the CPU and GPU
performance by varying the number of VCs allocated to them. The
network uses 4 VCs for each router input that are shared between
CPU and GPU packets. For example, [1:3] configuration allocates 1
VC to GPU traffic, and 3 VCs to CPU traffic. In the heterogeneous
chiplet system we investigated, all CPU chiplets run application
omnetpp while the GPU chiplets run one application from PATH,
LIB, STO, and MUM each time. Figure 2 shows the GPU IPC with
different partition schemes of VCs. As can be observed, GPU per-
formance gets improved by allocating more VC resources. Figure 3
shows the CPU IPC with different partitions of VCs. Allocating
more resources to CPUs, on the other hand, does not result in sig-
nificant performance improvement. In some cases, allocating more
resources to CPUs can even result in performance degradation for
both CPUs and GPUs. This is because a significant number of CPU
packets pile up at memory controllers (MCs), which already have
many GPU packets waiting to be served. Increased CPU packets
exacerbate the interference between the CPU and GPU traffic, re-
sulting in increased latency for both of them. As a result, both CPU
and GPU chiplets suffer from performance degradation.

2.2 Switch Utilization

In the microarchitecture of a NoC router, the switch allocation mod-
ule is responsible for managing the switch traversal of data packets
within the router to ensure that data packets can be forwarded effi-
ciently from their input ports to their output ports. SW arbitration is
performed among multiple packets competing for the same output
port. The winner of this arbitration can move to the next hop while
other packets have to wait for the next cycle’s arbitration. From
Figure 4, we can observe that GPU traffic injection rates change
significantly in different time periods, while CPU traffic injection is
relatively stable. Considering the variation of GPU traffic with time,
dynamically adjusting the switch arbitration strategy to allocate
more switch utilization to GPUs can allow their packets to move
faster and thus alleviate network congestion.

3 RECONFIGURABLE NETWORK DESIGN
USING KALMAN FILTER
As an effective and low-cost predicting technique, Kalman Filter

(KF) offers a viable solution for embedded systems [9]. By lever-
aging historical data and real-time feedback, KF can accurately
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Figure 5: System Overview.
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Figure 6: Kalman Filter and Router MicroArchitecture Design

predict future changes in system states, providing support for bet-
ter resource allocation decisions. This motivated us to develop a
KF-based scheme to dynamically allocate network resources in het-
erogeneous chiplets, aiming for better performance at lower cost.
We investigated shared network resources and found two critical
resources the applications competing for which majorly determine
the performance: virtual channel (VC) and switch utilization.

3.1 Kalman Filter Algorithm

Kalman Filter is an efficient recursive filter, which can estimate
the system state and its error covariance even if the transition and
observation models are uncertain. It utilizes two sets of equations:
time update equations and measurement update equations. Initially,
KF employs time updates to predict the current state estimation
ahead of time. Afterward, it updates these estimations through the
measurement equations, incorporating real-time measurements to
correct the forecasts. The time update equation works as a predictor,
predicting the system’s future state, whereas the measurement
update equation acts as an adjuster, refining these predictions with
observed data.

The KF implements a feedback control mechanism for state esti-
mation by utilizing the measurements as feedback. It advances the
current state and error covariance through the time update equation
to predict a priori estimates of the next state. By integrating new

measurements with past estimates via the measurement equations,
it refines these estimates and thus improves posterior accuracy.
This process balances prediction and correction to continuously
update its understanding of the system state.

Xj—1 is the prior state estimation, X and X}, are predictive and
posteriori state estimation. A, B and H are state transition, control-
input, observation model, Q and R are covariance of process and
observation noise. Pi_; is the prior estimation error covariance, P
and Py are predictive and posteriori estimation error covariance. U
and I are control and unit matrix. The formula for implementing a
Kalman Filter is described below:

Kalman Filter Time Update Equations:

Xy = AXje_1 + BUg 1 1)
P = AP AT +Q @)

The state and covariance estimates from time step k-1 to step k can
be obtained by Eqs.(1) and Egs.(2).
Kalman Filter Measurement Update Equations:

Ky = PR HT (HP.HT + R)™! 3)
Xi = Xy + K (Zy — HXy) (4)
P = (I - K) Py (5)

In the measurement update phase, the process begins by calculat-
ing the Kalman gain K, as shown in Eqs.(3). The posterior state
estimate is then obtained by combining the measurements using
Egs.(4), an iterative formula that converges to the final estimate
after several iterations. Finally, the update phase recalculates the
error covariance for each iteration, as specified in Egs.(5), ensuring
the estimates are adjusted for the actual measurements received.

3.2 Predicting NoC Traffic through Kalman
Filter

As can be observed from Figure 4, there exists a notable correlation
between GPU IPC and these three metrics::

e GPU_Icnt_Push: The number of injections from the GPU
core to the Interconnection Network (ICNT).

e GPU_Stall_Icnt-Shader: The number of GPU stalls caused
by delays from the ICNT to shader cores.

e GPU_Stall_Dramfull: The number of GPU stalls due to
DRAM memory being full.

When GPU _Icnt_Push increases, which leads to more network
congestion, GPU_Stall_Icnt-Shader and GPU_Stall Dramfull will
increase, leading to a drop in IPC. This observation enables our
construction of a Kalman Filter model that focuses on GPU-related
data because the CPU-related metrics barely change. To handle the
significant variance among these metrics, we first preprocess the
data and normalize them, so that they fall into the specific interval
of [-1, 1]. The purpose of this standardization of data is to scale the
data to a reasonable range, which can help improve the efficiency
and accuracy of the model in processing the data.

In our KF design, the state variable, denoted as Xj, represents the
GPU’s IPC, which we want to predict. Our dynamic network param-
eters include: GPU_Stall_Dramfull, GPU_Icnt_Push, GPU_Stall_Icnt-
Shader, the observations are denoted as vectors Z = [Zi1, Zka» Zi3) -
Through these parameter settings, the KF can predict the GPU’s IPC



in the next epoch. When the KF output is negative, it means that the
GPU’s IPC is maintained at a high level. When it becomes positive,
it means that the GPU’s IPC will decline. We can dynamically adjust
VC allocation and Switch Arbitration to make the GPU get more
resources. Figure 5 shows the architectural integration of a Kalman
Filter within heterogeneous chiplet systems. GPU and CPU cores
are linked to a network. GPU_Stall_Icnt-Shader is sourced from
data flow management between GPU cores and the interconnection
network. GPU_Icnt_Push comes from the interconnection network,
which manages data transfer between the GPU cores and other
components. GPU_Stall_Dramfull is retrieved from the memory
controllers (MCs) that manage the DRAM. This interface acts as
a gateway for feeding each epoch’s data into the KF module. Fig-
ure 6 shows more details of a router’s microarchitecture design.
The Kalman Filter’s output directs VC and SW Allocator adjust-
ments via the KF logic, optimizing network resource allocation and
system performance by dynamically reacting to congestion and
traffic conditions.

To further optimize our approach, we also formulated the rules
for deploying the Kalman Filter within our system. Initially, network
resources are distributed equally between the GPUs and CPUs. To
maintain the system stability and avoid deadlocks, the KF is not ac-
tivated until 10,000 cycles after the GPU applications start running.
After any network resource reallocation, the new configuration is
maintained for a minimum of 5,000 cycles. Therefore, even with
a change in the KF’s predictive output, adjustments to resource
allocation are deferred until after the mandated period has elapsed.
In situations where the duration in the state (KF output=1) sur-
passes 10,000 cycles, a reduction in GPU resource allocation might
be advisable, aiming for a return to an equitable sharing of network
resources between the CPUs and GPUs.

3.3 Dynamic VC and Switch Allocation

Our baseline method of VC allocation uses iSLIP[13] which allows
for efficient, round-robin scheduling. Our approach is a reconfig-
urable network design that segregates flits into GPU and CPU
partitions, allocating private VCs to each specific node that is criti-
cal to synchronized CPU and GPU operations. This strategy assigns
a first set of VCs to CPU traffic and the remaining set of VCs to
GPU traffic, ensuring dedicated resources for each type of traffic
flow. This can reduce congestion and therefore improve system
performance. Allocations are dynamically adjusted based on the
VC index associated with each flit type. As illustrated in Figure 7,
when the KF output is 0, GPU traffic uses VC 0 and 1, and CPU
traffic uses VC 2 and 3. When the KF output shifts to 1, GPU traffic
can use VC 0 through 2, while CPU traffic can only go through VC
3.

Figure 8 illustrates an example of the switch output request
queue in our routers. We use a single output request queue to
explain our switch allocation policy triggered by Kalman Filter (KF)
prediction. When a packet arrives at any input port of a router, it
requests access to an output port to proceed to its destination. In
cases where multiple input ports request the same output port, the
switch allocator must decide which input port to grant access to in
every cycle. The baseline switch allocation utilizes a round-robin
policy, as depicted in Figure 8, where blue blocks represent GPU
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Figure 8: Reconfigurable Switch Allocation.

packets and green ones represent CPU packets. The baseline routers
employ a round-robin policy, each packet is sent to the output port
in a round-robin manner, resulting in the first queue shown in the
figure. In our design, if the KF output is "0", the round-robin policy
will take effect. In this example, CPU packets will be granted access
to the output port faster than GPU packets due to a round-robin
policy. When KF predicts the need to allocate more resources to
GPU packets (KF output = 1), we require a different starvation-free
policy to prioritize GPU packets over CPU packets. Our new policy
prioritizes two GPU packets followed by one CPU packet. In this
way, more switch bandwidth resource is allocated to GPUs, trying
to meet their increased demand for network resources.

4 EVALUATION

4.1 Experiment Setup

We use the GPGPU-sim simulator[1] and integrate it with a cycle-
level x86 CMP simulator to evaluate our heterogeneous chiplet
system. Our baseline configuration is shown in Table 1. We experi-
mented with GPU benchmarks from the ISPASS2009[1] and Rodinia
[3]. The CPU benchmarks are selected from the SPEC CPU 2006
INT and FP suites and commercial server workloads for CPU. In our
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Table 1: System Configurations

GPU 14 Chips = 28 SM, 700MHz

GPU Spec Max 1536 Threads (48 warps, 32 threads/warp), 64KB
Shared Memory, 64KB Register

GPU 16KB 4-way (1 Data Cache), 12KB 24-way texture, 8KB

Caches 2-way Constant Cache, 2KB 4-way I-Cache, 128B Line Size

CPU 14 x86 Cores, 2000MHz, 128-entry instruction window,
000 Fetch & Execute, 3 instruction/cycles,max, 1 memory
instructions/cycle

CPU L1 | 32KB 4-way, 2-cycle lookup, 128B Line Size

Cache

CPU L2 | 256KB 8-way, 8-cycle lookup, 128B Line Size

Cache

Shared LLC | 1 MB/Memory Partition, 128B Line, 16- way, 700MHz

Warp Sched- | Greedy-then-oldest

uler

Features Memory Coalescing, Inter-warp Merging, Interconnect

Interconnect| 6 x 6 Shared 2D Mesh, 1400MHz, XY Routing, 2 GPU cores
per node, 1 CPU core per node, 32B Channel Width, 16VCs,
Buffers/VC = 4

Memory 8 Shared GDDR5 MCs, 800 MHz, FR-FCFS, 8 DRAM-

Controller banks/MC
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£ 2subnets-KF

W 4subnets

B 2subnets-baseline Ul 2subnets-EqualPartition

GPUIPC
{Normalized)

51O LPS HOTSPOTS BFS Gmean

Figure 10: GPU IPC.

[ 2subnets-KF

£ 2
O in =N

Average Packets
=)

Latency[Mormalized)

Figure 11: Average Packet Latency.

baseline, we employed two subnets: one for CPU/GPU requests and
one for CPU/GPU reply packets to avoid protocol deadlocks. The
baseline allows CPU and GPU chiplets to share network and router
resources in a round-robin fashion. Additionally, for comparison
purposes, we implemented a fair partition of network resources,
equally allocating the resources between CPU and GPU packets. For
more comparison, we have also implemented four subnets, phys-
ically segregating CPU and GPU packets, allocating a dedicated
subnet for CPU requests and replies, as well as GPU requests and
replies.

GPU IPC

12345678 9101112131415161718192021222324252627282930313233343536
== 2subnets-KF — 2subnets-EP

Figure 12: Dynamic GPU Performance with and without
Kalman Filter-assisted Resource Allocation.

We evaluated four different configurations, as depicted in Fig-
ures 9 and 10. The first configuration uses four subnets, with two
separate subnets allocated for CPU and GPU traffic (one for requests
and one for reply packets). The second configuration, serving as the
baseline, employs two subnets and utilizes round-robin scheduling
to share network resources, which has the advantage of reduced
cost and employs a fair scheduling policy for on-chip routers [17].
The third configuration equally distributes network resources, with
each GPU and CPU flow having an equal number of VCs allocated.
The last configuration is for our reconfigurable network design,
where we utilized Kalman Filtering to predict the next epoch traffic
pattern and adjust the resource allocation accordingly.

We can observe from Figure 11 that the packet latency is higher
when using four subnets compared to other designs with two sub-
nets. This is because the four exclusive subnets do not allow sharing
between different traffic flows and therefore cannot fully utilize
the network bandwidth. In the case of using only two subnets, we
allocated half of the VCs for the reply subnet, allowing GPUs to
take over bandwidth not used by the CPUs. As shown in Figure 11,
the performance of fair partitioning is similar to the baseline with
a small reduction in STO and LPS. In comparison, our proposed
Kalman Filter-based approach reduces the packet latency across all
of our workloads.

The main reason for this reduction in packet latency is better re-
source management. Figure 4 illustrates that in certain epochs when
the GPU chiplets inject more packets, the number of GPU stalls in-
creases. This is primarily due to the imbalanced resource allocation
when the GPU needs more resources but cannot get them from the
CPU chiplets. This imbalance results in performance degradation
of GPUs. Figure 12 shows that in some epochs, the two subnets
with equally distributed resources (2-subnet-fair) experience a drop
in IPC which means this resource allocation method cannot ad-
just to dynamic traffic changes. Using our proposed technique, by
leveraging the Kalman Filter, we can predict these dynamic changes
accurately. Then our resource allocator can adjust the allocation pol-
icy and allocate more resources to GPUs to avoid their performance
degradation.

Figure 10 shows the GPU IPC. The 4-subnet configuration ex-
perienced a decrease in performance across all five workloads,
with nearly a 20% reduction for BFS. In the 2-subnet fair alloca-
tion scheme, we observed a slight decrease in IPC compared to
the baseline. This is due to the higher bandwidth requirement by
the GPU in the network, as GPU applications are typically more
memory-intensive than CPU applications and require more net-
work resources to meet their demands. On the other hand, our
KF-based dynamic allocation predicted correctly the epochs when



GPU cores need more resources. By detecting an increase in packet
injection and longer GPU stalls due to memory accesses, as well
as GPU DRAM-full stalls, as depicted in Figure 4, KF can predict
increased resource demand from GPUs. Accordingly, we can adjust
the resource allocation policy and reduce the GPU stall time. As a
result, GPU IPC increased by up to 19%. This shows our scheme
can lead to more efficient resource sharing. As can be observed in
Figure 9, our design can keep CPU performance unaffected and
improve GPU performance by 7%.

In Figure 12, the green line at the top represents the output
signal generated by our KF predictor. A signal value of "0" indicates
an equal distribution of resources is good enough, while a value
of "1" indicates a change will be needed in the next epoch. For
example, we can move from the equal partition of VCs between the
CPUs and GPUs to giving more resources to GPUs, by allocating
75% of resources to the GPU and 25% to the CPU. This adjustment
is implemented in both VC allocation and switch arbitration. For
example, in the switch arbitration, instead of using a round-robin
technique to allocate output ports between CPUs and GPUs, we
prioritize GPU traffic by sending every two GPU packets followed
by one CPU packet. If there are no more CPU or GPU packets can be
found in the arbitration queue, the default round-robin technique
is employed.

5 RELATED WORK

Prior works have investigated different aspects of heterogeneous
chiplet designs. Wang et al. [15], studied chiplet-based SoC design,
utilizing advanced packaging to integrate multiple chips.Their tech-
nique can improve network bandwidth and reduce latency for Al
applications. Yin et al. [16] proposed a solution for deadlock pre-
vention in multi-chiplet systems by introducing a modular method-
ology that ensures deadlock-free routing. This approach allows
each chiplet and the interposer to implement their own indepen-
dent topologies and routing algorithms, promoting highly modular
chiplet-based SoC construction while achieving high performance.
Vivet et al. [14] tackled the challenges faced in high-performance
computing due to the increasing complexity and costs associated
with integrating various computing capabilities, including generic
cores and Al accelerators. They highlighted the shift towards alter-
native architecture solutions such as chiplet-based systems using
3D technologies to achieve modular and scalable designs. Feng
et al. [7] proposed an interconnection method for chiplet-based
systems to establish high-radix interconnection networks, over-
coming the limitations of flat topologies like 2D-mesh and ensuring
deadlock-free routing.

6 CONCLUSION

The increasing cost and design complexity of large System-on-
Chips (SoCs) have motivated the design of chiplets. The increasing
demand for heterogeneous hardware architectures leads to the de-
velopment of heterogeneous chiplets. However, chiplet design faces
several challenges and the interconnection network is a prominent
one. In this work, we propose a reconfigurable chiplet interconnec-
tion design to improve resource utilization by leveraging Kalman
Filter. Our technique can dynamically adjust the network resources
allocated to CPU and GPU chiplets based on their needs predicted
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by Kalman Filter. Our technique can improve both CPU and GPU
performance through efficient resource allocation.
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