A Two-Way Security-by-Design Paradigm for
Fortification of Industrial IoT

Anand K Bapatla!”, Saiuditi Rout?, Saraju P Mohanty®",
Elias Kougianos®

!Department of Computer Science and Cybersecurity, University of
Central Missouri, Warrensburg, MO, USA.
2Department of Electrical Engineering, Indian Institute of Technology,
Madras, TN, India.
3Department of Computer Science and Engineering, University of North
Texas, Denton, TX, USA.
4Department of Electrical Engineering, University of North Texas,
Denton, TX, USA.

*Corresponding author(s). E-mail(s): bapatla@Qucmo.edu;
saraju.mohanty@unt.edu;
Contributing authors: ee22b139@smail.iitm.ac.in;
elias.kougianos@unt.edu;

Abstract

Industrial Internet of Things (IIoT) is a network of things that are connected to
form a system to monitor, communicate, and analyze data with collective intel-
ligence. Internet of Things (IoT) has been a driving technology for many of the
sectors, Industrial automated systems is one such sector that has been deeply
influenced. Ensuring the security of IIoT devices presents significant challenges,
particularly in critical infrastructure. The current work adavances Security-by-
Design (SbD) paradigm in IIoT. This paper proposes a novel blockchain-based
verified patch delivery system that also integrates Verifiable Delay Functions
(VDFs) to provide a two-layer security. Blockchain provides a tamper-proof ledger
for verifying the integrity of patches as well as identification of IIoT devices pre-
venting rogue devices in the network. VDF's introduced help create a synchronized
patching across the critical infrastructure devices which avoids patch exploitation
by adversaries by reducing the attack surface.

Keywords: Security by Design (SbD), Industrial Internet of Things, Distributed
Ledger, Patch Delivery System, Synchronized Patching

1 Introduction

Internet of Things (IoT) is a rapidly increasing technology that has shown promising
applications in various sectors. It makes use of smart things that are connected to
each other that sense, communicate, analyze, and act to create collective intelligence
in the network. IoT applied to the critical infrastructure of industrial applications
is called the Industrial Internet of Things (IIoT). It is estimated around 15.9 bil-
lion IoT devices are currently connected and the number will reach more than 32.1
billion in the next decade [1]. Even though the usage of IoT in critical infrastruc-
ture comes with great advantages, it also introduces various security threats. As IoT
things or devices are resource-constrained, applying complex cryptography techniques
or running security software with a large footprint is not viable. Also, the increasing
landscape of threats needs continuous firmware updates for the things. Hence, IoT
things undergo continuous Patching. As the things in the IoT network are geographi-
cally dispersed forming a distributed network, connecting intermittently, constrained
by limited resources, ensuring timely patch deployments becomes complex [2]. Tradi-
tional patch management systems are designed for centralized smaller-scale systems
and are often incapable of handling large IoT environments.

In a centralized patch management system, a centralized server handles the stor-
age, management, and distribution of patches to the connected IoT devices. This
centralized approach has a few significant issues that include a Single Point of Failure
(SPOF), an adversary gaining access to these servers, or a server becoming unavail-
able can disrupt the patch distribution process. Secondly, large IIoT deployments can
overload the centralized servers leading to slower patch distribution, or even failed
updates. Typical Patch delivery system is shown in Figure 1.

IoT Devices Ty
ey Patch
i Administrators

IoT Devices
1

Patch
anagement

Patch @ _
Patch

Manual Patch Deployment Over-The-Air Updates
Centralized Content Delivery

Fig. 1 Centralized Patch Delivery System

Over-the-Air (OTA) Updates are a way of delivering firmware and software updates
wireless to the IoT devices [3]. In this method devices periodically check with a central-
ized cloud server for updates and patch automatically. Interception of patches while
in the network, or man-in-the-middle attack can occur if the updates are not securely

transmitted over the network. OTA updates also rely heavily on network connectiv-
ity, it will be a significant challenge to reach devices in remote areas with poor or
intermittent connectivity leaving some devices vulnerable to security threats. IoT net-
works contain heterogeneous devices with varying resource capabilities that can create
delays or failures in receiving critical updates. Manual patch deployment is also used
in some of the Industrial IoT (IIoT) environments due to its critical nature, but this
approach is laborious and time-consuming. Manual patching is also prone to human
errors such as incorrect patch versions, missed devices, and incomplete patching.

Vendor-specific solutions, each IoT device manufacturer offers proprietary patch
management systems that are specially designed for their devices. This approach
comes with the advantage of devices being part of the manufacturer’s ecosystem but
poses significant downsides like vendor lock-in, lack of standardization, and security
blind spots. Without industry-wide standards, these proprietary systems can create
fragmented ecosystems that can make device interoperability harder.

Security-by-Design (SbD) is a proactive approach that integrates cybersecurity in
both software and hardware design from the outset, making security a core component
throughout the design process [4]. Proposed architecture follows SbD paradigm by
leveraging blockchain and cryptography primitives Verifiable Delay Functions (VDFs).
Blockchain is one of the latest technologies that is being explored in multiple sectors
including IoT networks. The decentralized nature of blockchain can eliminate SPOF,
ensure transparency, provide availability, and make patches tamper-resistant. Employ-
ing blockchain in a patch management system can provide IoT devices with a secure
way to authenticate the patches before applying them. Also, going for a decentralized
approach can remove network bottlenecks and can serve large IoT networks.

A second layer of security is employed in the proposed architecture that includes
Verifiable Delay Functions (VDF's). Heterogeneous devices in the network with varied
resources can introduce another significant challenge of reverse-engineering the patch
[5]. Even automated tools are available to exploit these patches even before they
reach the lower capable devices [6]. VDFs proposed in the current architecture help in
synchronizing the patching mechanism of IToT critical infrastructure by reducing the
attack surface.

The rest of the paper is organized as follows: Section 2 discussed the current state-
of-art systems proposed for patch delivery mechanisms. Section 3 discusses the novel
contributions of proposed blockchain based approach with integrated VDFs. Section 4
provides preliminary knowledge and Section 5 describes the architecture of proposed
system. Section 6 discusses proposed algorithms. Section 7 describes the implementa-
tion of proposed patch delivery system and Section 8 provides conclusions along with
future research aspects.

2 Related Prior Works

Blockchain is one of the recent technologies which is growing rapidly and showing
promising solutions in various sectors. IoT is one of such fields that is benefited and
novel solutions leveraging blockchain are being explored. Even blockchains targeting

resource-constrained systems like IoT are being designed [7]. This section discusses
state-of-art proposed patch management systems.

CrowdPatching [8] proposed a decentralized protocol for delivering software
updates to IoT devices using Blockchain and zero-knowledge proofs. The proposed
architecture also includes a compensation mechanism for the distributors to enhance
trust by rewarding honest behavior. The proposed model provides high scalability and
efficient redistribution; however, this approach doesn’t consider the security issues that
can be introduced by the distributors, and also synchronization of patch application
is not discussed.

Proposed architecture in [9] utilized Ciphertext-Policy Attribute-Based Encryption
(CP-ABE) combined with blockchain to provide software updates to only authorized
devices. However, the complexity of decryption for CP-ABE is high and requires
large computations. Authors tried addressing this by offloading these computations to
blockchain which are expensive and require large amounts of resources.

Another blockchain-based approach utilizing the Ethereum platform is proposed
in [10]. The proposed peer-to-peer updates protocol leverages the blockchain ledger to
store software update metadata and uses it to enhance the integrity of patches. This
ensures the patch is not tampered with when in the network. However, the current
solution along with considering metadata for patch integrity also provides a way to
eliminate rogue IoT devices from the network.

Patch Transporter [11] discusses the challenges of delivering software updates in
Wireless Sensor Networks (WSN). A decentralized approach based on incentives for
faithfully transporting the patch is proposed in this paper. Patches are encrypted and
provided to the transporters who are responsible for delivering it to the end devices.
Keys are shared using blockchain using which the end IoT devices will decrypt the
patch.

Device identification using hardware primitives like PUF is proposed in [12].
Another SbD approach utilizing hardware security primitives and blockchain for IoT
device identity is explored in [13]. This proposed approach is an efficient way of creat-
ing an identity chain for the IoT devices ensuring rogue devices can be identified easily
in the network. Another approach of creating device identities using cryptography
keys is proposed in [14].

3 Novel Contributions of Proposed Model
3.1 Problems Addressed

Below are the problems with current patch delivery systems that are addressed in
current work:

e Centralized patch delivery systems can create a significant issue of Single Point of
Failure (SPOF).

® Overloading of centralized patch servers in a large IToT network can lead to
significant delays or even failed updates.

® Various network attacks makes it possible to tamper the patch if it is not securely
transmitted over the network.

¢ Delay in patches reaching to lower capable devices can lead to reverse engineering
attacks posing a significant threat.

3.2 Novel Contributions

Our novel blockchain-based patch delivery system with integrated Verifiable Delay
Functions (VDFs) and device identification mitigates some of the previously discussed
problems from centralized patch delivery systems. Below are the novel contributions:

¢ By utilizing a distributed architecture, the proposed system avoids single point of
failure and centralized control issues.

¢ Distributed nature can also avoid overloading by enabling parallel operations that
efficiently manage large IoT networks.

¢ The blockchain-based approach will provide a secure system by avoiding centralized
breaches, making it resistant to tampering and cyber-attacks.

¢ Proposed architecture utilizes VDFs to enforce a calculated delay that prevents
the devices from applying the patches prematurely and ensures synchronized patch
deployment.

® By utilizing digital twinning, the identity of each IoT device is managed to mitigate
the rogue devices in the network.

¢ Blockchain decentralized approach also provides a common platform for different
vendors to work collectively and reduce the interoperability issues.

4 Preliminaries

Verifiable Delay Functions (VDFSs) cryptography primitives that are designed for
enforcing a predefined amount of time delay by requiring a certain number of sequential
computations. These sequential computations cannot be parallelized, heterogeneous
devices with varied computational capabilities roughly takes the same amount of time
to do these computations. VDF involves two main steps. Firstly, evaluation step in
which the devices will compute the VDF that takes a pre-determined and verifiable
amount of time. Secondly, verification stage in which the output of computed VDF
can be quickly and easily verified.

One of the most common method to implement VDF is through repeated squaring
[15] in a group where the discrete logarithm is hard to compute. Let us consider
an example where VDFs are implemented using modular exponentiation. The VDF
computation is defined as below:

y=2> mod N. (1)

In the above expression:

® 1 is the base (starting value).
e N is a large prime modulus.
e T is the number of sequential squaring steps required.

The computation phase in which repeated squaring of the base x for T steps.
As the result of next step depends on output of the previous step, computation is

sequential and cannot be parallelized ensuring that it takes at least 7' number of steps
to compute the final result y.

Second phase in the process is to verify the computation. The result y can be easily
verified by using the following equation:

2T
Y mod N =z mod N. (2)

If this equation holds, then y is a valid result of the VDF. The verification process
uses efficient exponentiation algorithms and has a time complexity of O(log T log N),
making it significantly faster than the full VDF computation.

The security of the VDF relies on the assumption that the discrete logarithm
problem is hard to solve in the group modulo N. The VDF’s resistance to paralleliza-
tion ensures that even with substantial computational resources, the function cannot
be computed in fewer than T' sequential steps. In the context of IoT patch manage-
ment, VDFs ensure that patches are applied in a synchronized and controlled manner,
reducing the risk of exploitation during the patching process.

5 Architectural Overview of the Proposed System

The proposed Patch management system architecture is shown in Figure 2. Core
components of the proposed system consist of Blockchain, Smart Contracts, Decen-
tralized File System, IoT devices, VDF Module, Device identity management, and
Patch providers or administrators. Each of these components is discussed below:

= - .
\i‘(_» 52 a Patch Providers Device
- | Manufacturer
=
Ef= % g a Y Device
=2l FRJ = .
A g5 Identity
2 Information
2| |
Patch Management \

System Patch Management

E
g Smart Contracts
g
Decentralized Data Storage M=
(DDS) >,° Blockchain
£ Network
Fetching Patch from DDS * 2 *Fetching Patch Metadata

() T ToT
m Gateways

t Patch Requests

— — —
= > -
IoT Devices

Fig. 2 High Level Architecture Overview

Patch providers or administrators are the entities that are responsible for develop-
ing new patches and ensuring they address the device’s vulnerabilities. Once the patch
is ready and tested, patch providers will upload the patch to Decentralized storage

and receive the CID. Received CID along with patch metadata and VDF parameters
will be uploaded to the blockchain. Information about the patch such as the Con-
tent ID (CID) of the patch from the Decentralized File System, version number, and
release date will be uploaded by the patch provider to the ledger. Along with patch
information, this ledger also ensures identity management by logging the status of
the IoT device, information about the version of the patch, and whether the patch is
applied to it or not. Results from the VDF will also be stored in the ledger that will
be used during the verification phase. The characteristics of blockchain will ensure
once the patch is submitted by the provider, it is accessible to all the devices in the
network in a secure and immutable way.Smart contracts are pieces of code that exe-
cute automatically when certain conditions are met. These reside on the blockchain
and will be executed by all the nodes automatically. Patch Registration functions in
Smart Contract are responsible for recording the patch metadata along with the other
information regarding the patch. VDF functions are designed to verify each device’s
VDF computations. Device Identity function registers and authorizes only genuine
ToT devices restricting access to rogue IoT devices.

IoT nodes act as the endpoints of the system, and their responsibilities include
querying the blockchain to retrieve the latest patch metadata including VDF param-
eters. The device then starts the VDF computation, and the results will be submitted
to the blockchain for verification, once the verification and device authentication are
complete, the device will receive the CID using which it will download the actual
patch from the decentralized. These devices will interact with the blockchain layer via
lightweight blockchain clients as these are resource-constrained. The VDF module is
a crucial component in the proposed architecture which will enforce a verifiable time
delay. This VDF computation ensures all devices in the network wait for a prede-
termined time before they can apply the patch as prematurely applying patches can
increase the risk of attackers. Repeated squaring is used in the proposed architecture
for VDF computations.

Another key feature of the system is managing device identities and states using
smart contracts. Maintaining a ledger of the authorized devices will avoid unauthorized
access of patches by the rogue devices. Device manufacturer, once every IoT device
is manufactured, device-associated details like Media Access Control (MAC) ID and
other device information are registered to the blockchain. This information will be
used for authorization of genuine devices and blockchain along with maintaining the
identity, it will also store the current state of the device. This information will help
during audits to check if there are any unpatched devices in the network and take
prompt action.

6 Proposed Algorithms

Uploading the patch by patch administrator is clearly shown in Algorithm 1. Once
the patch is created that addresses the vulnerabilities of the IoT devices, the patch
administrator will compute the hash of the patch and then sends the actual patch file
to decentralized storage system. CID from Decentralized storage system along with
hash of the patch, patch metadata will be uploaded to the blockchain ledger by calling
smart contract functions.

Algorithm 1 Patch Upload Process

Lol A

© 3>

11:
12:
13:
14:

Input: Patch data P, Metadata M including version, release date, etc.
Output: Patch registered on blockchain with cryptographic hash H
Admin generates the patch P and associated metadata M.
Admin computes the cryptographic hash H of the patch:

H = Hash(P)
Store the actual patch file P in an external decentralized storage system.
Create a smart contract transaction with:

a. Cryptographic hash H

b. Patch version and metadata M

c. Link to patch CID from external storage

d. Verifiable Delay Function (VDF) parameters T
Register the patch metadata, hash H, and storage reference on the blockchain.
Blockchain stores the hash H and metadata M in an immutable ledger.
Confirm registration and patch availability.

Algorithm 2 Patch Download Process

Ll

© 2 3> @

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Input: IoT Device ID, Patch Metadata M, Patch Hash H
Output: Patch downloaded, VDF computed, and applied
IoT device queries blockchain for available patches.
Device retrieves patch metadata M and hash H from the blockchain.
Device retrieves the patch file P from the external storage using the metadata link.
Verify patch integrity:
H' = Hash(P)
if H # H then
Reject the patch and abort the process.
end if
Compute the Verifiable Delay Function (VDF):
Yy = 22" mod N
Submit the VDF result to the blockchain for verification.
if VDF result is verified then
Apply the patch.
Update the device state on the blockchain as patched.
else
Abort and log the failure.
end if

During the patch download process, IoT devices follow the following steps described

in Algorithm 2. The first step is the IoT device querying the patch data from the
blockchain using a lightweight client. Once, the patch metadata is received the device
will start the VDF computation and the computed result will be sent back to the
smart contract for verification. On successful verification, the patch will be applied by
the device.

Algorithm 3 Device Identity Management Process

: Input: Device details D (MAC address, device type)

: Output: Device registered on blockchain and authorized for patch downloads

: Device manufacturer generates device details D (MAC address).

: Manufacturer registers the device D on the blockchain by invoking a smart
contract.

: Smart contract stores:

a. Device MAC address

b. Device state (patched/unpatched)

c. Manufacturer details

: When an IoT device requests a patch, it submits its MAC address.

10: Blockchain smart contract checks the MAC against registered devices.

11: if MAC is valid then

12: Authorize the device to download the patch.

13: else

14: Reject the request and log the attempt.

15: end if

16: Once the patch is applied, update the device state as patched.

17: Administrators can audit device states to detect unpatched devices.

BwWw N

© ® 3> @

Device registration and authorization steps are shown in the Algorithm 3. When
the manufacturer manufactures a device, details about the device like MAC address,
Device Type, and other information will be registered by the manufacturer by invoking
the smart contract. These details will be stored in an immutable ledger and later used
for authorizing the device.

7 Implementation and Validation

7.1 Implementation

To validate the proposed patch delivery system architecture, it is designed using
the Ethereum platform. Ethereum is a blockchain platform designed for Decentral-
ized Application (DApp) development which will abstract the complexity of using
blockchain. Ethereum supports smart contracts which are used in our design to per-
form essential functions of device registration and verification, patch upload and
delivery, and VDF computations and verification. These smart contracts are written in
solidity language. Truffle suite is used for developing the required DApp and Ganache
local blockchain is used for testing the application. Ganache is a local blockchain
that mimics the operation of the main chain but runs locally. Ganache provides free
accounts with test Ether which is the native currency of Ethereum for testing pur-
poses. This facilitates an inexpensive way of testing our DApp’s during development
instead of spending real currency on the MAINNET. The same is used in our imple-
mentation for functional testing. Client programs using JavaScript are created that
act as IoT Nodes for requesting and processing the patches.

CAWINDOWS\system3z\cmd.
ion

ould not connect to your Ethereum client with the following parameters
- hos > 127

accepting RPC connectio
le over the
y configured

—rpc” or “——http” option i d in geth)

e configuration file (truffle-config.js)

v5.4.28 (core: 5.4.28)
.10.9

nagement>truffle test
st'

\AppData\Local\Temp\tes ZENVIXZXTFS

ipten.clang

Contract: IoTPatchManager

Fig. 3 Functional Test Results from Deployed Proposed System on Ganache

7.2 Validation

A functional analysis is performed using the Chai assertion library for Node.js to verify
the expected outcomes of the tests. Different test cases are designed to capture the
functions of the smart contract. Results from the analysis can be seen in Figure 3. A
comparative analysis between the state-of-art and proposed architecture is shown in

Table 1.
Blockchain| Patch Patch Device Device Synchronized|
Platform Storage Integrity Identity State Patch
Verifica- Application
tion
Puggioni, Ethereum Decentralized v Public & | X X
et al. [8] Storage Private
Keys
Solomon, Ethereum Centralized | v CP-ABE X X
et al. [9] Cloud encryption
Server
Witanto, Ethereum Centralized | v X X X
et al. [10] Manu-
facturer
Server
Lee, et al. | Bitcoin Centralized | v Targeted X X
[11] Provider Set of
Server Devices
Proposed Ethereum Decentralized v Manufacturer v/ v
Storage Device
Metadata

Table 1 Comparative Analysis of Proposed Architecture with State-of-Art

10

8 Conclusions and Future Research

In this work, we have proposed a novel Blockchain-based IoT Patch delivery mecha-
nism integrated with VDF to ensure timely delivery and deployment. The proposed
architecture is robust and reliable to address the challenges of securing critical IoT
infrastructure. By leveraging a tamper-proof ledger, this system ensures verifiable
patch management. The inclusion of VDFs adds an additional layer of security by
enforcing a verifiable time delay in the patching, preventing premature and unautho-
rized updates. By employing a device identity mechanism using smart contracts, we
were able to mitigate the unauthorized entities gaining access to patches.

In future work, we will perform performance optimization of VDF computations
and explore lightweight VDF implementations for resource-constrained devices. Layer-
1 blockchains come with limitations on scalability and throughput, so we will explore
Layer-2 solutions to accommodate higher traffic from large IoT networks.

References

[1] Vailshery, L.S.: Number of IoT Connections Worldwide 2022-2033, with Fore-
casts to 2030. Last Accessed: 2024-09-01. https://www.statista.com/statistics/
1183457 /iot-connected-devices-worldwide/

[2] Maroof, U., Shaghaghi, A., Michelin, R., Jha, S.: iRECOVer: Patch your IoT on-
the-fly. Future Generation Computer Systems 132, 178-193 (2022) https://doi.
org/10.1016/j.future.2022.02.014

[3] Villegas, M.M., Orellana, C., Astudillo, H.: A study of over-the-air (OTA) update
systems for CPS and IoT operating systems. In: Proc: 13th European Conference
on Software Architecture. ECSA, vol. 2, pp. 269-272. ACM, Paris, France (2019).
https://doi.org/10.1145/3344948.3344972

[4] Pescador, F., Mohanty, S.P.: Guest Editorial Security-by-Design for Electronic
Systems. IEEE Transactions on Consumer Electronics 68(1), 24 (2022) https:
//doi.org/10.1109 /tce.2022.3147005

[5] Barnett, R.: The Race to Patch: Attackers Leverage Sample Exploit Code in
WordPress Plug-in. Last Accessed: 2024-09-01. https://www.akamai.com/blog/
security-research /attackers-leverage-sample-exploit-wordpress-plugin

[6] Letian, S., Jing, C., Jianming, F., Guojun, P.: PVDF: an automatic patch-based
vulnerability description and fuzzing method. In: Proc: Communications Security
Conference, pp. 1-8. Institution of Engineering and Technology, Beijing (2014).
https://doi.org/10.1049/cp.2014.0733

[7] Bapatla, A.K., Puthal, D., Mohanty, S.P., Yanambaka, V.P., Kougianos, E.: Easy-
Chain: an IoT-friendly blockchain for robust and energy-efficient authentication.
Frontiers in Blockchain 6 (2023) https://doi.org/10.3389/fbloc.2023.1194883

11

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://doi.org/10.1016/j.future.2022.02.014
https://doi.org/10.1016/j.future.2022.02.014
https://doi.org/10.1145/3344948.3344972
https://doi.org/10.1109/tce.2022.3147005
https://doi.org/10.1109/tce.2022.3147005
https://www.akamai.com/blog/security-research/attackers-leverage-sample-exploit-wordpress-plugin
https://www.akamai.com/blog/security-research/attackers-leverage-sample-exploit-wordpress-plugin
https://doi.org/10.1049/cp.2014.0733
https://doi.org/10.3389/fbloc.2023.1194883

8]

[14]

[15]

Puggioni, E., Shaghaghi, A., Doss, R., Kanhere, S.S.: Towards Decentralized IoT
Updates Delivery Leveraging Blockchain and Zero-Knowledge Proofs. In: Proc:
19th International Symposium on Network Computing and Applications (NCA),
pp. 1-10. IEEE, Cambridge, MA, USA (2020). https://doi.org/10.1109 /nca51143.
2020.9306689

Solomon, G., Zhang, P., Brooks, R., Liu, Y.: A Secure and Cost-Efficient
Blockchain Facilitated IoT Software Update Framework. IEEE Access 11,
44879-44894 (2023) https://doi.org/10.1109/access.2023.3272899

Witanto, E.N., Oktian, Y.E., Lee, S.-G., Lee, J.-H.: A Blockchain-Based OCF
Firmware Update for IoT Devices. Applied Sciences 10(19), 6744 (2020) https:
//doi.org/10.3390/app10196744

Lee, J.: Patch Transporter: Incentivized, Decentralized Software Patch System
for WSN and IoT Environments. Sensors 18(2), 574 (2018) https://doi.org/10.
3390/s18020574

Li, Z., Chu, Y., Liu, X., Zhang, Y., Feng, J., Xiang, X.: Physical Unclonable Func-
tion Based Identity Management for IoT with Blockchain. Procedia Computer
Science 198, 454-459 (2022) https://doi.org/10.1016/j.procs.2021.12.269

Bathalapalli, V.K.V.V., Mohanty, S.P., Kougianos, E., Iyer, V., Rout, B.:
PUFchain 3.0: Hardware-Assisted Distributed Ledger for Robust Authentica-
tion in Healthcare Cyber—Physical Systems. Sensors 24(3), 938 (2024) https:
//doi.org/10.3390/s24030938

Ghosh, U., Das, D., Banerjee, S., Mohanty, S.: Blockchain-Based Device Identity
Management and Authentication in Cyber-Physical Systems. In: Proc: Consumer
Communications and Networking Conference, pp. 1-6. IEEE, Las Vegas, NV,
USA (2024). https://doi.org/10.1109/ccnc51664.2024.10454888

Wesolowski, B.: Efficient Verifiable Delay Functions. In: Ishai, Y., Rij-
men, V. (eds) Advances in Cryptology — EUROCRYPT 2019, vol. 11478,
pp. 379-407. Springer, Darmastadt, Germany (2019). https://doi.org/10.1007/
978-3-030-17659-4_13

12

https://doi.org/10.1109/nca51143.2020.9306689
https://doi.org/10.1109/nca51143.2020.9306689
https://doi.org/10.1109/access.2023.3272899
https://doi.org/10.3390/app10196744
https://doi.org/10.3390/app10196744
https://doi.org/10.3390/s18020574
https://doi.org/10.3390/s18020574
https://doi.org/10.1016/j.procs.2021.12.269
https://doi.org/10.3390/s24030938
https://doi.org/10.3390/s24030938
https://doi.org/10.1109/ccnc51664.2024.10454888
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1007/978-3-030-17659-4_13

	Introduction
	Related Prior Works
	Novel Contributions of Proposed Model
	Problems Addressed
	Novel Contributions

	Preliminaries
	Architectural Overview of the Proposed System
	Proposed Algorithms
	Implementation and Validation
	Implementation
	Validation

	Conclusions and Future Research

