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Abstract. The Lite-Agro study aims to deploy deep learning neural network models
for pear disease identification through tree leaf image analysis on TinyML device. A
case study on pear leaves is conducted with publicly available pear disease dataset.
Quantitative comparisons are made between different datasets. Lite-Agro is a light-duty
image computing detection solution that is tested for deployment on a microcontroller.
The novelty of Lite-Agro, lies in the export of a lightweight TinyML, Tensorflow Lite
model that is geared for low power applications on battery powered hardware. The goal
is to find the best model that is custom selected for the application and achieves the
highest accuracy. The study emphasizes finding a balance between size, accuracy and
performance. In future iterations of the study, Lite-Agro is to be mounted on an unmanned
aerial vehicle to be powered with solar panels. Modern low powered microcontroller
devices are to be a staple implementation in Smart Villages.
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1 Introduction

Deep Learning has made major advancement in the last ten years. They are being employed
in applications encompassing a wide range of use cases from speech generation, text processing
and image identification. In 2020, the world wide yield of pear was 23 metric ton. However,
pear diseases can adversely affect the pear yield. Early and automatic detection of pear diseases
can stop over use of herbicides, reduce the cost related to the expensive expert services to detect
the diseases, and mitigate the disease early to reduce the financial loss of the farmers.

When deep neural networks (DNN) are employed to detect plant diseases, they automatically
extract the features from the input data and detect the disease. DNN provides high accuracy after
training with a large dataset. Images of the pear leaves can be used as the input data. However,
this current research, Lite-Agro, aims to bring the solution to the farmer with a low power
edge solution. This research on TinyML [20] and it’s application on micro controllers branches
off from a plant disease identification [14] and crop damage estimation [15] study. Lite-Agro,
applies deep learning to improve efficiency in Smart Agriculture [16]. Lite-Agro is designed to
be a lightweight system that runs on a low power microcontroller and aims to find optimization
in terms of model accuracy while being a low cost hardware implementation.
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The paper is currently organized into various sections. Section 2 summarizes novel contribu-
tion. Section 3 discusses prior work. A system level overview is discussed in Section 4. Section
5 talks about proposed training methods and a comparative perspective. Experimental validation
is discussed in Section 6. Section 7 concludes the article with an overview of future work.

2 Novel Contributions of the Current Paper

2.1 Problem Addressed and Proposed Solution

Lite-Agro, a lightweight, low power TinyML-based pear disease identification system, is pro-
posed to address the needs of a plant disease solution in pear farms. Manual inspection of
leaves for plant diseases translate to time inefficiencies. A combination of various deep learning
models were trained until the best recognition accuracy was attained. The novelty lies in the
application of compact modern Convolutional Neural Networks (CNNs) that are evaluated on a
publicly available dataset [6]. The CNN-based model Xception generated the highest recognition
accuracy of 99.97% however due to microcontroller memory constraints, other models are being
considered. This is important as a computing gear for smart villages.

2.2 Novelty and Significance of Proposed Solution

The novelty of Lite-Agro lies in the exploration of low powered and lightweight hardware
platform for the optimum TensorFlow [29] Lite model, trained to learn the identification of
diseases in pear leaves. The study looks at how modern deep learning convolutional neural
networks contribute to the optimization and reliability of TinyML [8] applications. The explo-
ration of a light-duty computing hardware platforms powered by TinyML: TensorFlow Lite
for microcontrollers has key potential in Smart Village edge devices. Exploring TinyML options
and how it can be utilized as the hardware solution for a TinyML image capture implementation,
comprises as the element of novelty in this study.

3 Related Prior Works

The work in [28] has explored three classifications of infections; Septoria piricola [1, 25],
Alternaria alternate, and Gymnasporangium haracannum [11]. DiAMOS plant study, mentions
the use of pretrained models or an ensemble of pretrained models such as EfficientNetB0 [24],
InceptionV3 [23], MobileNetV2 [19], and VGG19 [22]. To conclude with a model that results in
the highest accuracy, the study employed training on the PDD2018 dataset with VGG16, Incep-
tionV3, and Resnet50 [12] models. Data augmentation, number of epochs and image resolution
size, were the variable parameters in the experiment. Table 1 presents a summary of these works.

Alternaria alternata in plant disease pathology, is defined as a type of an opportunistic fungus
that is the cause of spot or discoloration on leaves. Gymnosporangium haracannum [11], more
commonly called as juniper rusts, is an orange lesion and rust like spotting on a leaf. The disease
is more of a cosmetic eyesore since infected fruits can look like corona gelatinous fingers.
Septoria pyricola [1], is another plant disease found on Pears (Pyrus Communis). Outbreaks
have been said to have occurred in pear orchards. A simple description of this disease is a brown
outer rim leaf spot with a white central lesion.

The study conducted in [5] benchmarks a comparison between an ensemble combination of
three neural networks such as EfficientNetB0 [24], MobileNetV2 [19], and InceptionV3 [23]. Ef-
ficientNetB0 + InceptionV3 [12], produced the highest value of recognition accuracy at 91.14%.
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Table 1. Accuracy of CNN and Ensemble-based Models in the PDD2018 (left) DiaMOS Study (right).

PDD2018 Study Accuracy DiaMOS Study Pixel Size Accuracy
EfficientNetB0 citeefficientnetB0 89.02 % VGG16 224 x 224 78.34 %

InceptionV3 [23] 84.44 % VGG16 600 x 600 96.80 %
MobileNetV2 [19] 87.70 % InceptionV3 224 x 224 80.23 %

EfficientNetB0 + InceptionV3 91.14 % InceptionV3 600 x 600 97.99 %
EfficientNetB0 + MobileNetV2 86.21 % ResNet50 224 x 224 73.85 %

InceptionV3 + MobileNetV2 85.35 % ResNet50 600 x 600 98.70 %

CNN-based plant disease identification is presented in [13]. In [26], a study that incorporates the
novel use of solar power in the hardware aspect of plant disease identification has been presented.

4 LITE-AGRO: A SYSTEM LEVEL OVERVIEW

The system overview of Lite-Agro is shown in the Figure 1. A public image dataset is used
for the training of the model. In terms of software, the research utilizes Tensorflow [7], a
framework written in Python that contains C++ machine learning [21] and artificial intelligence
libraries. On top of that is Keras, which is defined as a software API (Application Programming
Interface), fully integrated with the backend TensorFlow. GPUs have revolutionized machine
learning studies and have enabled researchers to explore and apply real time parallel processing
algorithms. Using AMD’s open source framework ROCm, the authors perform high performance
computing experiments and maximize multi-core capabilities [17]. The model generated through
Tiny ML techniques, is exported as a Tensorflow Lite model that is then converted as a C source
code byte array. Tensorflow Lite is the ultra low power port of TensorFlow designed to run on
microcontrollers [27]. The EspressIf firmware compiles the model and the program together.
The lightweight TinyML model runs on a single-board computer, which interfaces with an
edge-server board equipped with an camera.

Camera for
Visual

Proposed LiteProposed Lite-Proposed Lite-AgroAgro System

Camera for

Training for Training for TinyMLEdge-Server for 
TinyML

Agriculture Dataset

Power 
Source

Fig. 1. System Overview of Lite-Agro.

5 PROPOSED TRAINING METHOD

5.1 Proposed Methodology

The debate whether to train using deep learning and which platform to choose, is a critical
question in the Lite-Agro study. Deep learning is preferred, and this is attributed to the accuracy
of results. The prospect of the automated predictive capability offered by deep learning is a state
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of the art technology by itself, and the possibilities on the application of automation are endless.
A CNN Network, the master algorithm in computer vision [18] is an imagery architecture used
to process the pixels of images. Model Training is the step where a network learns from the
dataset to determine’s the model’s weight and biases. A summary of the Tensorflow model
training algorithm procedure used in this study is shown in Algorithm 1.

Algorithm 1 TensorFlowLite Model Training Procedure with Keras API.
1: Declare folder path and run Image Data Generator on training, validation and test labels.
2: for iteration=1,...,3006 images do
3: Preprocess images via VGG16.
4: Call flow from directory and pass folder path, image size, classes and batch size.
5: Preprocess image dataset from directory.
6: Set parameters categorical cross-entropy and 256 x 256 image size.
7: Set color mode RGB, batch size, and validation split of 0.2.
8: end for
9: for iteration=1,...,3006 images do

10: Preprocess image validation set from directory with categorical 256 x 256 image size.
11: Set color mode RGB, batch size and validation split of 0.2.
12: end for
13: Declare a Sequential Model or call a Pretrained model.
14: Compile with rmsprop, categorical cross entropy, and set accuracy metrics.
15: for iteration=1,...,100 epochs do
16: Train model by calling the fit method.
17: end for
18: Save Model and Weights. Load Model.
19: Convert Keras Model to TensorFlowLite Model. Open file to save.

Epoch was set to 100 and it took 6 hours and 45 minutes to reach accuracy of 99.73%. The
best performing model was produced by an InceptionV3 [23] inspired architecture,“Xception” [2]
model. The Inception [23] model, is a stack of layers meant to extract features and are con-
ceptually similar to convolutions, which are highly intensive computational processes. Keras
libraries abstract the convolution process in it’s library function calls. Various combinations
of parameters were tested to generate the best accuracy numbers. The Xception architecture’s
performance is attributed to the more efficient use of model parameters. The Table 2 shows
a comparative analysis between PDD2018, DiaMOS and the current paper (Lite-Agro). The
approach was adopted in [5] to address the accuracy problem on pear disease recognition, was
to adopt an ensemble CNN method during training.

Table 2. Quantitative Analysis of Current Paper with existing Pear Disease Imaging Works.

Works Dataset Resolution Size Model Recognition Accuracy
Yang, et al.[7] PDD2018 600 x 600 Resnet50 [9] 98.7%
Fenu, at al. [3] DiaMOS 224 x 224 EfficientNetB0 [24]+InceptionV3 [23] 91.14%

Current Paper (Lite-Agro) DiaMOS 256 x 256 Xception [2] 99.73%

Compilation is the step to prepare the model for training. An optimizer is a learning al-
gorithm that models the input and adjusts the network as it undergoes training. In previous
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paper studies [5], most mention Adam optimizer as the default choice. Adam optimizer is a
learning algorithm characterized as an extension of a stochastic gradient. It is best suited for
large datasets and calculates at random points in each iteration to achieve a faster convergence.
In this experimentation, the compile step argument selected was an RMSprop optimizer. In
an RMSprop optimizer, gradient descent algorithms, achieving a faster learning rate as steps
increments are larger, leading to a faster convergence.

5.2 Evaluation Metrics

We see how recognition accuracy increases in every epoch stage throughout the training. Ten-
sorboard handles the logging, reporting and graph generation. Data visualization becomes easier
given the set of TensorFlow tools. The graph on Fig. 2 shows the trend of accuracy increase
per epoch during the training procedure.

Fig. 2. Recognition Accuracy(left) vs Loss (right) at Various Epochs.

6 Experimental Results

We used DiaMOS dataset consisting of 3505 images of pear leaves of which fall under four
classifications; healthy, spot, slug and curl [5]. A selected example is presented in Figure 3.

TinyML [20], short for Tiny Machine Learning, describes hardware, algorithms, and soft-
ware [27]. TinyML targets being able to run inference programs on battery operated hardware
and memory constrained implementation. The ability to port ML models on microcontrollers
brings about countless application possibilities. Much of the emphasis in this study will be on a
TensorFlow version of TinyML called, TensorFlow Lite for Microcontrollers. Keras API allows
the conversion of an .h5 format of a model into a compact TFLite extension. This TensorFlow
Lite conversion allows bigger models with a relatively large size, to execute in a more compact
form. An Xception trained model of size 163,373KB for example, when ran through the
aforementioned TFLite converter, gets compacted down to 81,257KB. This port of TensorFlow
is optimized for running on edge devices and geared for space efficiency and addresses memory
constraints. The TFLite model is once again converted to a C source file byte array, that describes
the model. Inference is then run on the trained model and translated into the most probable set
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(a) Spot and Slug Leaves from the DiaMOS Plant Dataset

(b) Curled Leaves from the DiaMOS Plant Dataset

Fig. 3. Representative of the DiaMOS Plant Dataset.

Table 3. Comparison of Tensorflow Supported Platforms.

Board Microprocessor CPU
Clock

Voltage SRAM
Size

Connectivity

Arduino Nano 33 BLE Sense nRF52840 64 MHz 3.3V 256 KB USB UART, SPI, I2C, BLE, SPI
STM32F746 Discovery Kit 32bit ARM Cortex 48MHz 3V-5V 192KB USB LQFP100 I/O
Espress ESP-EYE 32-bit ESP32 240 MHz 3.3V 8MB

PSRAM
UARD, USB, BLE, SPI, I2C, WiFi

Sony Spresense -M4F6 Core 156 MHz 3.3V-5V 1.5MB GNSS, UART, I2C, SPI, I2S

of classification. Currently, there are a limited number of development boards supported by
TFLM, mentioned on the TensorFlow website which are summarized in the Table 3.

Onboard is the Xtensa single/dual core 32 bit LX6 microprocessor [30] with 448 KB ROM,
520KB SRAM and 16KB SRAM. To program the ESP32-CAM WiFi, TensorFlow Lite uses
firmware EspressIDF [4] to build and configure the board. Lastly, once the source code has been
modified, the trained model is added, then the program can once again be flashed from the Rasp-
berry Pi 3B board to the SD card and executed using a monitor call. Initially, the ESP32-CAM
GPIO pins are interfaced with FTDI adapter. With the ESP32-CAM wiring set-up, the main com-
plication lies in the need to connect the GPIO0 to ground every time the program needs to be re-
flashed. The ESP32-CAM takes photos at specific intervals and displays information whether the
pear leaf is healthy or not through a monitor. Once it detects a diseased pear leaf, the information
shall be displayed to an edge server and peripherals may be connected to display the information.
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Fig. 4. IDF Monitor Pear Disease Detection Test (left). Test Set-up (right)

7 Conclusion and Future Work

Deployment of deep learning models trained in pear disease identification, implemented on
micro controllers were explored. A lightweight port of Tensorflow called TinyML [27] or
TensorFlow Lite was used. The ESP32-CAM delivers a balance of price, power and performance
and make a good hardware selection for edge devices. Often times, memory is severely resource
constrained [3] but being able to run tiny deep learning models have great contribution in the
automation of devices. This is why light-duty computing platform for IoAT-Edge devices and
how it can improve the processing in Smart Agriculture processes was explored. The deployment
of Lite-Agro in a proper testing environment where the pears are located and being able to gather
actual field data can further contribute to this study. Researchers can further verify whether
the models deliver the performance that the recognition accuracy numbers claim to deliver.
The possibility of adding a battery or solar component and mounting on an unmanned aerial
vehicle [10] would be an interesting future work expansion.
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