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Abstract. By 2050, 60% more food will be required to feed a world population of 9.7
billion. Producing more food with traditional agriculture will stress the earth’s limited
natural resources. To avoid such a scenario, greener, sustainable, and modern agricultural
practices should be followed. More efficient food production along with a reduction of
food wastage at different levels of the food supply chain will ease our ecosystem. Plant
disease outbreaks are one of the major causes of crop damage, which is essentially one
of the causes of food wastage. Hence, plant disease detection and damage estimation
are important to prevent crop loss. However, until now, not much work has been done
to estimate the damage caused by the disease. In this paper, we propose a novel method,
aGROdet, to detect plant disease and to estimate the leaf damage severity. aGROdet
is aimed at being implemented at the edge platform of IoT systems in the proposed
Agriculture Cyber Physical System. A convolutional neural network-based model has
been proposed to detect different plant diseases. The model has been trained with large
publicly available datasets. More than 97% accuracy has been achieved in the initial
phase of the experiment. A pixel-based thresholding method has been used for estimating
the severity of the damage. Damage estimation limiting factors, such as on the leaf and
around the leaf shadows, have also been addressed.

Keywords: Smart Agriculture - Smart Villages - Internet of Agro Things (IoAT) - Agri-
culture Cyber Physical System (A-CPS) - Plant Health - Plant Disease - Crop Damage
- Convolutional Neural Network

1 Introduction

Agriculture is one of the major industries of today’s society. It is complex and is affected by
various unpredictable factors such as climate change, population explosion, natural resource
limitation, and plant diseases. Due to the recent advancements in information and communication
technology (ICT), breakthrough hardware innovations, and the computing paradigm shift from
cloud-based computing to more edge-oriented computing, various issues in agriculture are
being addressed. The inclusion of automation in agriculture through Artificial Intelligence
(Al)/Machine Learning (ML)/Deep Learning Technologies (DLT) has welcomed Agriculture
4.0 [19], and Agriculture 5.0 is knocking at the door. The need for initiatives for agriculture
cyber physical systems (A-CPS)-based solutions is greater than ever. Fig. 1 shows some of the
agricultural problems which can be solved using A-CPS concepts.
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Fig. 1. Agricultural Problems solvable using Agriculture Cyber Physical Systems

Plants, like all living things, are prone to diseases. Disease inhibits a plant from reaching its
full capacity [2]. It varies with seasons and plant types. External conditions or living organisms
can cause diseases. Nutritional deficit, heat, flooding, and freezing are some examples of external
agents that cause non-infectious or abiotic diseases, whereas plant pathogens like fungi, bacteria,
viruses, and algae cause biotic diseases. The occurrence of a biotic disease is illuminated by
the “Disease Triangle” [32] shown in Fig. 2. Disease occurs when all three factors-favorable
environment, vulnerable host, and harmful pathogens-are present concurrently. The red region
in the Venn diagram of Fig. 2 represents the occurrence of the disease. However, certain factors,
such as pathogen genetic variation, local micro-climate, and host plant immunity at a specific

stage of its life cycle, may alter this fact [2]. To develop a disease in a plant, the pathogen needs
to complete its life cycle in the host.

Favorable
Environment

Pathogen Vulnerable Host

Fig. 2. Disease Triangle [32]
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1.1 Research Problem

Diseases prevent the growth of plants. They affect the quality of the crop and reduce the final
yield. Billions of dollars in crop losses happen per year. The food supply chain is also gravely
impacted [3]. Hence, farmers need to:

— Detect the disease early.

— Identify the disease.

— Know about the severity of the disease.

— Determine the extent of damage.

Regular monitoring of plants is necessary for a successful disease management system.
According to [25], speedy detection of plant disease at early stages of outbreak and its prevention
will become the two major goals of agricultural research by 2030. In this paper, three of the
four points are addressed.

1.2 Proposed Solution

We propose a novel automatic method, aGROdet, to detect plant disease and estimate corre-
sponding leaf damage. However, the damage due to diseases can be present in different stages
of plant growth and at different parts of a plant. A convolutional neural network-based method
for the identification of the disease and a novel pixel-based thresholding method for estimating
the leaf damage severity are proposed. Regular monitoring of fields and checking the conditions
of the plants through aGROdet can detect the disease early.

The paper is organized in the following way: Section 2 discusses the significance of the work
in the context of a smart village. Section 3 reviews recent work on plant disease detection. The
proposed A-CPS is described in Section 4. Section 5 provides an overview of aGROdet, detailed
methodology, and experimental details. Section 6 evaluates the performance of aGROdet and
compares our work with existing work. Finally, the paper concludes with future work direction
in Section 7.

2 Significance of aGROdet in a Smart Village Context

Today, close to 3.4 billion people live in rural areas. The majority of villages lack technology,
innovation, energy, and industry even today. However, the modernization of villages with
Internet connectivity, smart agriculture, smart healthcare, smart grid, and education is required.

A holistic approach is needed for rural areas to ensure the sustainable development of society.

To implement that goal, various smart village movements have recently emerged across the

globe in various sectors. For example, Fig. 3 shows the smart energy project sites of IEEE Smart

Village initiatives [1].

The application of heterogeneous technologies centered on the Internet-of-Things (IoT)
can shape rural areas as smart villages [8]. As the financial backbone of the smart village is
agriculture industry, it is one of the most important areas of research for smart villages. To
transform the traditional agriculture to an efficient, sustainable, and green agriculture, digital
transformation is the key. In this context, our proposed method aGROdet is appropriate.

— Plant disease is a major challenge for sustainable agriculture. It is a nightmare for farmers
as disease can destroy the plants and cause huge losses. The common method of plant disease
detection in developing countries even today is manual observation. It is an arduous process. It
needs expertise, and the service is so expensive that it is not always affordable for farmers [31].
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Fig. 3. IEEE Smart Village Map for Smart Energy Projects [1]

In such a scenario, the farmer can have an overall idea of the disease and its severity through
the proposed method, aGROdet.

— It automatically and accurately detects plant diseases and estimates damage. Significantly
less effort is needed from the farmers’ perspective to use aGROdet. It is accessible through
a mobile app. To get the results, farmers only need to take a photo of the diseased leaf. The
rest of the process is automatic.

— Itis an edge-based Internet of Agro Things (IoAT) method that can detect plant disease and esti-
mate the damage even without an Internet connection. If an Internet connection is not available
for any reason, the damage estimation procedure will not be affected. An Internet connection
is used to store data in the cloud. This stored data is used for future training of the model.

— This is a very useful tool for farmers who can detect plant diseases with an estimation of
plant damage on their own. No expert knowledge is required.

— We hope that aGROdet will help farmers take proper control measures and save time, money,
and secondary plant losses.

3 Related Works

During a review of the literature, two types of papers addressing plant or crop diseases stand
out: the first addresses multi-crop disease solutions, while the second focuses on a specific
crop or plant type. In the last decade, mostly traditional image processing algorithms and
hand-picked features with machine learning (ML) classifiers have been used to detect plant and
crop diseases. Those approaches have their own difficulties, along with not so great accuracy [18].
In recent studies, mostly computer vision-based methods with deep learning networks are being
proposed for this purpose. The use of deep learning networks, mostly convolutional neural
network (CNN)-based approaches, makes the disease identification automatic, reduces manual
intervention, and performs better in detecting plant diseases.

Complex features are obtained automatically in deep learning network-based solutions via
various layers and types of neural networks, particularly CNN. Different CNNs have been used
for different purposes, such as feature extractor [10], classification network [35], and disease
localization network [38].
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3.1 Single Plant/Crop Diseases Detection:

Non-parametric ML classifiers are used in various works, along with the recent trend of deep
learning networks for detecting plant/crop diseases. For example, the K-means algorithm is used
in [24] for paddy leaf diseases. Several studies have been conducted on cotton diseases. The
K-nearest neighbors (KNN) algorithm has been used in [28] for cotton leaf diseases. Ramularia
leaf blight cotton disease has been identified using non-parametric classifiers from multi-spectral
imagery of an UAV in [39]. A decision tree classifier has been used for detecting cotton crop
diseases [7]. Cotton leaf spot disease has been detected in [5] using Support Vector Machines
(SVM). Cucumber’s powdery mildew has been segmented using U-Net at pixel level with high
accuracy in [17].

A combination of InceptionV3 and ResNet50 networks has been used to identify grape leaf
diseases with 98.57% testing accuracy [13]. A shallow 3D CNN structure has been used on
hyperspectral images to identify a soil-borne fungal disease, charcoal rot, for soybean [23]. An
improved AlexNet model has been used to identify fragrant pear diseases and insect pests [37]. A
typical accuracy of 96.26% has been achieved. In [26], a Faster RCNN has been used to detect
sugar beet leaf spot disease with 95.48% accuracy. Northern maize leaf blight detection has
been done in [34] using multi-scale feature fusion method with improved SSD. Mask R-CNN
has also been used to segment UAV images in [33] for northern maize leaf blight detection.
In [4], a YOLOV3 network was used to detect pests and diseases in tea leaves. Using SegNet,
four categories of grape vine diseases have been identified in [14] from UAV images.

3.2 Multi Plants/Crops Diseases Detection:

Deep learning techniques are popular in the research community for multi-plant detection. A
convolution neural network-based Teacher-Student network has been utilized to detect plant
diseases [6]. A sharper visualization of the diseased leaf has been achieved with the PlantVillage
dataset [11]. Another deep convolution neural network-based on GoogleNet and AlexNet has
been used to detect crop diseases with 99.35% accuracy [22] using the earlier mentioned dataset.
In [30], Single Shot MultiBox Detector (SSD) model has been chosen among three different deep
learning models for plant disease detection. It shows 73.07% mean average precision (mAP) with
the Adam optimizer on the Plant Village dataset. In [12] severity of crop leaf disease has been
estimated along with crop type and crop disease prediction with an 86.70% accuracy using binary
relevance (BR) multi-label learning algorithm and Convolutional Neural Network. Another
CNN-based structure, built from a ResNet50 network with shuffle units, has been used to detect
plant disease and estimate the severity of the disease in [16] with an accuracy of 91%, 99%, and
98% for disease severity, plant type, and plant disease classification, respectively. In [9] several
networks have been tested and finally an accuracy of 99.53% in identifying plant disease has
been achieved. Disease prediction has also been done along with crop selection and irrigation [36].
In this work, a CNN-based plant disease detection network has achieved an accuracy of 99.25%.

From the above discussion, it is clear that the majority of papers address various diseases for
different plants or crops. However, it is highly important to estimate the disease-related damage.
Without that knowledge, plant disease management and prevention is not possible.

4 Proposed A-CPS

Fig. 4 shows the agriculture cyber physical system (A-CPS) [21] for plant disease detection and
damage severity estimation. It is developed through the proposed IoAT-based method aGROdet.
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The A-CPS consists of two systems - physical systems and cyber systems. Physical systems
consist of “things”, stakeholders, and computing devices. In our case, the “things” are UAV
cameras and phone cameras, the computing devices are single board computers and mobile
phones, and the “stakeholders” are microbiologists, plant pathologists, agriculture companies,
farmers, and the Agriculture Research Service. Cyber systems comprise deep learning models,
software, efficient data storage, and blockchain for data security. It is distributed in two different
platforms. Deep learning models and software are present both at the edge and in the cloud,
whereas the rest are mainly in the cloud. Physical systems and cyber systems are connected
through the network fabric. Depending on the location and range, the network fabric can be
Sigfox, ZigBee, LoRa, Wi-Fi, 4G, or 5G.

Smart Village

..........................

gcloud Storage
AlIML/Deep

@’ Model Training

Eah Data Security-Blockchain

- I Data Analytics
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Application
Service
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@, AlML/Deep
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Fig. 4. Agriculture Cyber Physical System

As aGROdet performs two jobs - plant disease identification and damage severity estimation-
we divide the work into two parts. The methods have been described in the following Section 5.

S aGROdet: Proposed Method

5.1 Detection of Plant Disease

Methodology This section describes the proposed deep learning-based method for identifying
plant diseases from images of leaves. It is a multi-class image classification problem wherein
the model learns to label images through supervised learning techniques and predicts the label
of an unknown image. The model learns the features of the labeled images during training and
classifies the unknown and unlabeled images with a confidence score. The success of accurate
prediction depends on the classifying skill of the model, which in turn depends on how well
the model has learned.

Network Architecture: Convolutional neural networks (CNN) are state-of-the-art architectures
for image classification. Various CNN structures are being used for image classification in the
literature. Here, a custom CNN has been used for plant disease detection purposes, as shown



aGROdet: A Novel Framework for Plant Disease Detection and Leaf Damage Estimation 7

in Fig. 5. It has 5 convolutional blocks. Each block comprises a Convolutional layer with ReLU
activation followed by a BatchNormalization layer and a MaxPooling layer. There are 32 filters
in the first Conv2D layer, 64 filters in the Conv2D layers of the next three blocks, and the final
block Conv2D layer consists of 128 filters. The kernel sizes of the convolutional layers are kept
the same as (3 x 3) with stride 1 and no zero padding. BatchNormalization layers only normalize
the previous layer output during inference after being trained on a similar type of images as
testing data. A MaxPooling layer has been used to reduce the spatial dimensions. The kernel
size of the MaxPooling layer is 2 x 2 with stride 2. The final block is followed by a Flatten
layer which is succeeded by two Dense layers. The first Dense layer uses ReLU activation and
1280 nodes, whereas the last one has 39 nodes and a Softmax activation function. 6,117,287 of
the 6,117,991 parameters are trained. Table 1 describes the output shapes of the layers in detail.

. -
Input RGB
pu Normalized
Image Image |

Disease
Type

Convolutional + ReLU BatchNormalization . Flatten

. Max Pooling . Dense + ReLU . Dense + Softmax

Fig. 5. Plant Disease Detection Network

Experimental Validation

Dataset Details: In this section, experimental validation of disease detection is presented.
Publicly available plant leaf data has been used for training and evaluating purposes. The
PlantVillage dataset [11] has been used for training the system. The dataset has 55,448 images
of 39 different classes. 38 classes are related to plants’ leaves, and 1 class is for images with
no leaves. 49,886 images were used for training and validation whereas 5,562 images to test
the method. Fig. 6 shows some sample images from the dataset. 80% - 20% distribution has
been used for the training and validation.

Dataset Processing: RGB images of size 256 x 256 have been used for training. The images
have been normalized before sending them to the network to avoid slowing down during
training by limiting computation with large numbers. Data augmentation has been performed
on training and validation data for better and more accurate performance. Fig. 7 shows samples
of augmented data. Image processing techniques, e.g., rotation, zoom, brightness, horizontal
and vertical flip, have been used to generate augmented data on the go.

Experiment: Fig. 8 shows the plant disease detection workflow. The augmented and prepro-
cessed data is used for training the network. The Adam optimizer [15] has been used with an
initial learning rate of 0.001. The model has been trained for 75 epochs, meaning 75 times
the network iterated through the total dataset during training. The model has been trained with
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Table 1. aGROdet CNN Architecture for Plant Disease Detection

Layers QOutput Shape
Conv2D (f=32, k=3, s=1, p=0)
Activation: ReLU (254,254, 32)
BatchNormalization
"7 7 "Maxpooling?D (k=2,s=2) | (127,127,32)
Conv2D (f=64, k=3, s=1, p=0)
Activation: ReLU (125, 125, 64)
BatchNormalization
"7 7 "Maxpooling?D (k=2,s=2) | 62,62,64)
Conv2D (f=64, k=3, s=1, p=0)
Activation: ReLU (60, 60, 64)
BatchNormalization
"7 7 "Maxpooling?D (k=2,s=2) | (30,30,64)
Conv2D (f=64, k=3, s=1, p=0)
Activation: ReLU (28,28, 64)
BatchNormalization
"7 7 "Maxpooling?D (k=2,s=2) | (14, 14,64 ~
Conv2D (f=128, k=3, s=1, p=0)
Activation: ReLU (12, 12, 128)
BatchNormalization
"7 7 "Maxpooling?D (k=2,s=2) | 6,6,128)
Flatten (4,608)
Dense (u=1280) (1280,)
Dense (u=39) 39,

B Healthy

Apple Scab Black Rot Applé Rust

/

Corn/Gray “Cor Northern
Leaf'Spot Blight

Fig. 6. Sample Images from PlantVillage Dataset [11]
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Fig. 7. Sample Augmented Data. Data is augmented on the fly for different rotation, zoom, brightness,

horizontal and vertical flip.

and without a reduced learning rate of factor 0.1. Then the trained model is saved for future
inference. The model is evaluated using the 5,562 images that were kept aside. The disease
detection network in aGROdet has been implemented in Keras with TensorFlow back end.

Training
. : ) =8 N — :
“ Horizontal Flip, N LJ N [
-‘_’ Vertical Flip, Resize 256x256 @, a .
b Rotation, Zoom, Normalization
L1 Saving
Training Data Data Data Model Trained
Dataset Annotation Augmentation Processing Training Model
Trained Model
Testing

‘ Resize 256x256 || ﬁ
N ization: Inference

le

Healthy/Disease Type

Fig. 8. Plant Disease Detection Workflow

5.2 Estimation of Leaf Damage Severity

This section describes the leaf damage severity estimation process. To estimate damage severity,
leaf area and damage area are calculated. The ratio of these two areas gives the percentage of
leaf damage. Finally, a rule-based system predicts the damage severity. Fig. 9 shows the pipeline

of the method.
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Fig. 9. Leaf Damage Estimation Workflow

Leaf Area Detection This is the first step to estimating leaf damage severity. First, the leaf area
is detected and a mask is created for the leaf. Background segmentation and thresholding have
been used to create the mask. Finally, the area of the mask is calculated to obtain the leaf area.

Background Segmentation: The leaf image consists of two parts- foreground object and the back-
ground. Our object of interest is the foreground object, or leaf. To segment the background from
the leaf, the GrabCut [29] algorithm has been used. When different foreground objects are present,
the number of iterations and the parameters of the algorithm need to be changed manually. But as
in our case, only a specific type of object, i.e., leaf, is detected, no manual adjustment is necessary.
In this method, an initial rectangle is drawn over the foreground object. The outside of the
rectangle is considered the confirmed background. The inside of the rectangle consists of the
foreground and some parts of the background. In our work, we kept the image size of 256 x 256
as in Fig. 10(a) and chose to draw a large rectangle of size 226 X 226. A large rectangle is drawn
to ensure that the whole foreground object or leaf stays within the Region of Interest (ROI).
Once the ROl is defined, the GrabCut algorithm applies a Gaussian Mixture Model (GMM) to
the ROL The pixels are grouped based on their similarity in color. A graph is created based on the
pixel distribution where each pixel forms a node. Two additional nodes work as the references.
The pixels attached to the Source node are considered foreground pixels. However, background
pixels are connected to the Sink node. The probabilities of connecting to Source or Sink nodes
decide the weights of the edges of the graph. Similar pixel nodes are connected by edges with
higher weight values. Finally, the foreground pixels are segmented from the background pixels
by minimizing a cost function, which is the summation of the weights of the cut edges. We
iterated the process 5 times to segment the leaf from its background. After segmentation, the
background pixels are turned black for the next step of processing, as shown in Fig. 10(b).

Thresholding and Leaf Area Detection: Shadows can be present on and around the leaves. They
have an impact on accurate leaf detection. The outer shadow increases the leaf area, whereas
the on-leaf shadows hinder the creation of a perfect mask for the leaf. The large red ovals in
Fig. 10 show around the leaf shadows, and smaller circles denote on the leaf shadows.

As HSV color space separates image color (hue) from the color intensity (value), we transform
the leaf images from RGB color space to HSV color space. The thresholding is then performed
over black color, as in Fig. 10(c). As the foreground object, a leaf, is our object of interest, the
mask is inverted. But several masks have noise due to specular reflection and shadows on the
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Fig. 10. Leaf Area Detection by Creating Leaf Mask. a. Input Image b. Background Segmentation c. Mask
Creation for the Leaf d. Noise Reduction from the Mask. Red large ovals show the shadow around the
foreground object and small circles highlight the shadows on the foreground object.

leaf. This noise has been shown in small red circles in Fig. 10(c). To get a noise-free mask, we
selected the largest contour of the foreground object. The healthy leaf consists of a large contour,
whereas a damaged leaf has a larger contour and several smaller contours depending on the
damage. Hence, the largest contour, selected from the foreground image, is drawn over the mask
as in Fig. 10(d). It gives a perfect noise-free mask for the leaf.

Around the Leaf Shadow Removal: Around the leaf shadows have been removed before
background segmentation. As shown in Fig. 11(b), pixel-based thresholding is performed to select
the shadow. The area around the leaf shadow part is then segmented from the foreground leaf
during background segmentation, as in Fig. 11(c). It is removed through contour selection during
final mask generation as in Fig. 11(d). Finally, the final mask is made noise free in Fig. 11(e).

Fig. 11. Removal of Shadow around the Leaf. a. Input Image b. Detection of Shadow around the Leaf c.
Shadow Removal d. Leaf Mask Creation e. Noise Reduction from the Mask. Red large ovals show shadow
around the leaf and brown ovals highlight the shadow on the leaf.

Damage Area Detection Leaf damage area calculation is also necessary to estimate the leaf
damage severity. The process is shown in Fig. 12. First, around the leaf shadow is detected and
removed, as in Fig. 12(b) and Fig. 12(c). As shown in Fig. 12(d), a mask is generated for the
green portion of the leaf and is bit-wise merged with the input image, as shown in Fig. 12(e).
Next, the black background of the image is segmented from the merged image and recolored with
any other color to differentiate it from the damage, as in Fig. 12(f). Next, pixel-based thresholding
is performed on the black color to generate the mask for the damage, as in Fig. 12(g).
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Fig. 12. Leaf Damage Area Detection a. Input Image b. Detection of Shadow around the Leaf c. Shadow
Removal d. Leaf Mask Creation e. Merging of Mask and Input Image f. Recoloration of the Black
Background to Differentiate them from the Damage g. Damage Mask Creation.

Leaf Damage Estimation For estimating leaf damage, the areas of the leaf mask and damage
mask are calculated. Pixels, present in the masks, are counted to calculate the area. Fig. 13
shows a sample area calculation and the estimated percentage damage of a leaf.

Leaf Area = 32,947
Damaged Area = 1,300
Est. Damage =3.95 %

F W0 10 20 20

o %
Damage Mask

Leaf Imége ! Leaf Mask

Fig. 13. Leaf Damage Estimation

Then, a rule-based system decides the severity of the damage to the leaf. The damage severity
grade scale is suggested in Table 2. If there is no damage detected, the system predicts the leaf
as healthy. However, if the percentage of damage is greater than 0, it grades the damage severity
into different tiers depending on the values. According to Table 2, the damage severity grade
of the damaged leaf in Fig. 13 is Gr-1 as the damage is between 0 and 5%.

Table 2. Damage Severity Grade Scale

Estimated Damage (%) |Damage Severity Grade
0 Healthy
>0 and <=5 1
>5and <=10 2
>10 and <=25 3
>25 and <=50 4
> 50 5
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6 Performance Evaluation of aGROdet

This section describes the performance of aGROdet for disease detection and disease severity
estimation. Unseen images from the PlantVillage Dataset [11] have been used for evaluation
purposes.

6.1 Disease Detection

The performance of the model has been evaluated through various metrics. 5,562 unseen images
of the [11] dataset have been used for validating the model. Fig. 14 shows the confusion matrix
for this multi-class problem. Different performance metrics [20] have been calculated as in Eqns.
1,2, 3, and 4.
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A B TP+TN M
Y = TP TN+FP+FN
TP
Precision = ———— 2
Trecision TPLEP 2)
TP
Recall = m (3)
2
Fl-score = ———— “4)

Precision ' Recall
TP is True Positive, T'N is True Negative, F'P is False Positive, and F'N is False Negative.
Two other diagnostic curves-ROC curves and Precision-Recall curves-are drawn too. Fig. 15(a)
and Fig. 15(b) show such curves for only 8 classes. These evaluating tools are originally defined
for binary class problems. However, for multi-class problems, these metrics and curves have
been obtained by utilizing the one vs. all method. A weighted average precision of 98% has
been achieved.
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Fig. 15. Performance Evaluation Curves for Disease Detection (Trained without reduced learning rate)

Table 3 shows the accuracy of the model for two different training scenarios. When the model
is trained with a reduced learning rate of factor 0.1, better accuracy is obtained.

Table 3. Accuracy for Disease Detection Network

Training Type Accuracy (%)
Training Validation Testing
Without reduced learning rate 97.62 97.42 97.68
With reduced learning rate 98.89 98.41 98.58

6.2 Leaf Damage Severity Estimation

The method has been validated with part of the PlantVillage dataset [11]. No experiment has
been done with corn leaf images in the dataset. Estimation of damage will not be correct in those
cases, as the whole leaf is not visible in the image. Table 4 shows some sample results. The first
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column shows the tested images, whereas the second and third columns present leaf and damage
masks, respectively. The results are stated in columns four and five. The estimated leaf damage
presented in the fourth column of the table matches with the leaf and mask damage images
of columns two and three. The shadows on and around the leaves impact the damage estimation
negatively. However, damage estimation by aGROdet is not affected as damage masks in column
three of Table 4 are accurately generated even in the presence of shadows. Even if there is some
specular reflection in the image, aGROdet can still correctly estimates the damage of leaves.

There are certain scenarios when aGROdet will not estimate leaf damage correctly, e.g., for
variegated plants. In those plants, the healthy leaves have other colors, e.g., yellow or white, along
with green. Abelia, Azalia, Boxwood, Cape Jasmine, Hydrangea, and Lilac are such variegated
plants. However, our area of interest is mainly crops, fruits, and vegetable plants or trees where
the color of the leaves is usually green. They may turn yellow if they are under abiotic stress
due to lack of nutrients in the soil, over or under watering, over use of fertilizers, extreme cold,
and absence of enough light. However, aGROdet can detect those yellow parts as damage.

Table 4. Damage Severity Prediction through aGROdet

Image Leaf Mask | Damage Mask | Estimated Damage
Damage (%) |Severity Grade
3.95 1
2.97 1
53.49 5
10.69 3

9.49 2
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6.3 Comparative Analysis

Table 5 shows a comparative analysis between aGROdet and other existing works. The majority
of the papers did not address the disease severity issue. [12] has addressed the disease severity
issue, but lower accuracy has been obtained. However, an accurate leaf damage percentage has
been achieved in our work along with the disease type. aGROdet gives a better perspective of
leaf damage.

Table 5. A Quantitative Analysis of the Current Paper with Existing Works

Works Disease Type Accuracy (%) Damage Estimation

Jietal [12] Multi Disease 86.70 Yes
Mohanty et al. [22] Multi Disease 99.35 No
Jietal [13] Single 98.57 No
Wang [37] Single 96.26 No
Ozguven et al. [26] Single 95.48 No
Pallagani et al. [27] Multi Disease 99.24 No
Current paper Multi Disease 98.58 Yes

7 Conclusion and Future Work

Plant disease is one of the major causes of crop damage. It stalls a plant’s growth and prevents

plants from reaching their full potential. Hence, plant disease detection is important. However,

to prevent the disease, farmers need to know the severity of the disease. Hence estimation of the
damage is another important area of research to know the severity of the disease. Our proposed
aGROdet could be a useful component to smart village initiatives. In this paper:

— We proposed a plant disease detection system, aGROdet, for plant disease detection and leaf
damage estimation.

— We evaluated our system through various performance metrics. aGROdet has a very high
success rate in detecting disease and estimating leaf damage.

— Even when there are shadows in the image, aGROdet accurately calculates the damage.

— aGROdet accurately estimates damage, even in the presence of some specular reflection.
However, there are limitations to aGROdet which need further experimentation. In future

work, these limitations are required to be addressed.

— [11] has images of single leaves. In reality, when the images are taken with a mobile phone
camera or UAV, there will be several leaves in the same image. Hence, a single leaf image
needs to be detected from the shot image before applying aGROdet.

— As previously stated, aGROdet does not estimate damage in variegated leaves. Inclusion of
these plants’ damage estimates would be a good addition.

— Extent of damage is another area that needs attention.

— Disease can appear in any part of the plant. Here, only the top of the leaves are considered.
In the future, other parts of the plants affected by disease need to be considered too.

— More work on the removal of shadows and specular reflections is needed. This will increase
the accuracy of damage estimation.

— The presence of pests on the leaf has not been considered. Inclusion of damage estimation
in the presence of the pest would be an interesting task too.
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— Finally, more publicly available datasets will be an important addition to this research. Clean
and more informational datasets will orchestrate the progress of data-centric Al initiatives.
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