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Abstract—Not knowing the type of skin lesion or too much-
delayed diagnosis can lead to chronic disease or skin cancer. In
SkinAid, we propose an application that can not only assist the
dermatologist in obtaining a preliminary analysis of detecting,
classifying and monitoring the skin lesion but also creates
awareness for the user to care for the skin. SkinAid classifies
and provides information on several skin lesions. In this regard,
the highly unbalanced and limited data leads the existing Deep
Learning models to overfit or poorly generalize, resulting in re-
duced performance. We explore Generative Adversarial Networks
(GANSs) to augment and enhance the dataset. Also, we trained
a Deep Convolutional Neural Network (CNN) model for edge
computing platforms that can automatically detect and classify
skin lesions from the captured image of the user’s skin. A single-
board computer and a smartphone employed as edge platforms
have been implemented in SkinAid. The SkinAid model detects
and classifies 7 different skin lesions with an overall accuracy
of 92.2%. A health worker or patient can capture the real-time
skin lesion images using a smartphone app camera to obtain
a preliminary analysis to diagnose the skin lesion in Internet-
of-Medical-Things (IoMT) platform for remote monitoring by
dermatologists.

Index Terms—Smart Healthcare, Internet of Medical Things
(IoMT), GAN, CNN, skin lesion, Deep Learning.

I. INTRODUCTION

The term "Skin Lesion" refers to those patches of skin that
appear deviant from the rest of the skin. Some visible examples
of deviants include irregular coloring of skin and itching. Skin
lesions are classified into many classes based upon different
characterizations and properties of lesions. Broadly lesions
are classified as Benign and Malignant. [1]. Some examples
of malignant lesions include Melanoma [2] and Basal Cell
Carcinoma, while benign lesions include Melanocytic Nevi,
Actinic Keratosis, etc. Malignant lesions are cancerous and
are sometimes life-threatening.

However, many lesions go unidentified or unrecorded due
to many factors [3]. Statistics show that number of people
diagnosed with cancer-causing skin lesions is estimated to
be 9500 per day in the United States. The average cost of
treating skin cancers in the United States is, projected to be
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8.1 billion dollars. Studies by dermatologists depict that most
skin lesions are harmless, but there is a need to classify these
lesions rapidly for early diagnosis. According to a survey by
the Skin Cancer Foundation, 99% of skin cancers can be cured
by early detection.

In the new age of Deep Learning and Computer Vision,
frameworks provide the best possible solutions to tackle this
problem. But one of the significant shortcomings of these
frameworks is the deficiency of data. Due to numerous skin
lesions and different variants in different people, there is
always a deficiency of skin data. ISIC, HAM10000, PAD-
UFES are some of the significant datasets of skin lesions
[4]. Though they are claimed to be state-of-the-art datasets,
they still lack data on certain classes of lesions. In recent
years, CNNs were proven to produce the most accurate and
precise results for developing skin-lesion classifiers [5]. The
main objective of using deep neural networks is their ability
of learning to extract features very effectively.

Benign lesions like Actinic Keratosis, Melanocytic Nevi,
Benign Keratosis, Vascular Lesions, Dermatofibroma, and Ma-
lignant Lesions like Melanoma [6] and Basal Cell Carcinoma
are the seven types of skin lesions detected and classified
through this research. A Wasserstein GAN is used to generate
synthetic data by training on the original data for each class
exclusively, and finally, a CNN is trained to detect and classify
skin lesions. Our concept revolves around developing a mobile
application that takes a skin lesion image as input and classifies
the image into the respective lesion class using a trained
CNN model. This work proposes SkinAid, an IoMT-enabled
mobile application that could detect and classify 7 different
skin lesions from images captured with a Smartphone. The
major contributions of our work includes the following:

« The presence of essential image preprocessing techniques

to enhance the process of feature extraction.

« Generation of synthetic data by training the Wasserstain

GAN with gradient penalty.

o Training a CNN architecture with the (synthetic data +

original data) thus obtaining an improved and higher



accuracy as compared to other works.

« A robust user-friendly android application that can assist
healthcare professionals is developed in obtaining a pre-
liminary analysis by detecting and classifying the skin
lesion on real-time data.

The paper is organized as follows: Section II gives the
overview of prior related work. Section III emphasises upon
the methodology of designing the Skin Aid framework. Section
IV discusses about the experimental results and the hardware
specifications of the proposed system.

II. RELATED RESEARCH OVERVIEW

Cancer-causing skin lesions are increasing rapidly, early
identification and classification of these different kinds of
skin lesions have always been a matter of contention among
different researchers.

The significance of IoMT Smart healthcare is that there
is effective diagnosis of different potential diseases, proper
treatment of these diseases and improvement in the quality of
life. Currently, research in IoMT Smart healthcare is seen as a
multi-dimensional scenario where many parameters are taken
in account. Some examples of research in this field include
human body monitoring, stress monitoring and Food in-take
monitoring [7] [8].

But some of the existing works in skin lesion classification
are limited to binary classification, i.e., Non-melanoma (non-
cancerous) or Melanoma (cancerous), and data augmentation
techniques were also absent, with the sole use of the under-
sampling technique, resulting in over-fitting and poor general-
ization [9]. A method combining deep CNNs and traditional
computer vision features based on clinical criteria with un-
balanced and limited data is proposed in [10]. However, the
model achieved a maximum training accuracy of only 85.5%.

Fusing the deep features from various pre-trained CNNs
is shown to lead to better classification performance in [11].
But it was restrictive to only 3 skin lesions and included only
AlexNet, VGG-16, and ResNet-18 as their pre-trained models
while there were many state-of-the-art CNN architectures. A
new prediction model based on a new regularizer was pre-
sented in [12], which achieved high accuracy. However, it was
limited to binary classification, and choosing the regularization
parameter was difficult as mentioned by the author.

Although extensive research has been conducted in this
field, to the best of our knowledge, none of these solutions has
a preprocessing pipeline with cropping contours, global con-
trast normalization and morphological transformations. None
of solutions used advanced data augmentation techniques like
GANsSs for generating synthetic data. Most of them do not have
a dedicated user interface like a smartphone application built
with the trained deep learning model for practical real-world
use.

The SkinAid not only ensures that it is detecting the class
of skin lesion captured from the smartphone camera but
additionally, it also generates a preliminary analysis in the form
of a report and provides information and awareness about the

diagnosed lesion. Table I shows the comparison of SkinAid
with existing solutions of skin lesion classification.

III. PrRoOPOSED NOVEL SKINAID IN AN IoMT FRAMEWORK

SkinAid provides the patient with a mobile app that can
be used to detect and classify skin lesions by exploiting the
computation power and digital lens of smartphones. This forms
the next wave of advancement in smart skincare. The outline
of the proposed approach is shown in Fig. 1 and subsequently,
it is explained in detail in the following sub-sections.
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Fig. 1. Proposed IoMT based H-CPS for Smart Healthcare with SkinAid

The methodology is organized in the following fragments:

« Data preprocessing: The data is pre-processed to re-
move unnecessary noise and redundant background which
might reduce the classification performance. The tech-
niques used for preprocessing are contour detection and
cropping, GCN, and morphological Transformations.

« Generation of new samples: By training the W-GAN on
the limited data, new synthetic samples are generated to
overcome limited and unbalanced data challenges. This
enhances the data as we train the CNN model in the next
section.

« CNN Training: A robust CNN model is trained, validated
and tested with an improved accuracy. Further, the model
is converted into a .pb file for android deployment.

o Deployment: The trained weights of our model are
deployed in an android application using JAVA. A user-
friendly interface is designed. Skin lesion image can
be captured and the app classifies the lesions into its
respective class and provides preliminary analysis and
information about the lesion.

A. Dataset

In this paper, we used the HAMI10000 dataset, which
is a collection of various skin lesions and dermatoscopic
images. The HAM 10000 dataset consists of 10,015 skin lesion
images with 7 different classes of lesions, and this dataset
is publically accessible [13]. Unfortunately, it is limited and
has highly unbalanced classes, and if directly trained on CNN
architectures, it would over-fit and fail to generalize, leading to



TABLE 1
COMPARISON OF SKINAID WITH EXISTING WORKS

Name of the Work Methodology Used Dataset Accuracy Interface Over- No. of
Present? fitting? Lesions
Classified
Skin Lesion Classification from VGGNet Dermofit 81.3% No No 2
Dermoscopic Images [9] Image
Library
Deep Learning Feature Modified ResNet50 ISIC 2018 85.5% No No 7
Combining Classification [10]
Skin Lesion Classification using SVM Classifiers ISIC 2017 83.3% No Partial 2
Hybrid NNs [11] Over-fitting
Skin Lesion Classification Using Novel Regularizer ISIC 97.2% No No 2
Convolutional Neural Network Archives
With Novel Regularizer [12]
SkinAid WGAN-GP with HAM- 92.2% Yes No 7
DenseNet-121 10000

poor performance. To address this problem, we preprocessed
the entire dataset and split it into training and test sets. Then we
use the training set to train the W-GAN and generate synthetic
data, thereby increasing and augmenting our training data
thus, overcoming the highly unbalanced classes and limited
data challenges. Finally, we combine the synthetic samples
and training sets and split into train and validation sets. Next
we train on different CNN architectures, validate and test the
architectures, and deploy our best model in the Smartphone
application.

B. Image preprocessing

The images present in the dataset are not uniform there is a
presence of noise and unnecessary background which implies
the presence of undesired features. The significance of image
preprocessing is that it reduces the noise and other factors
leading to misclassification to a great extent.

Contour Detection: In a broader perspective, contours are
referred to as a drawn outline of an irregular figure. In our
context, they refer to the outlines of the skin lesion. Here we
use contours, for detecting lesions in the images to extract the
region-of-interest (ROI), including only the skin lesion pixels,
thereby excluding the unwanted background. This reduced a
lot of time taken by manual cropping. We aim to determine the
bounding box of the lesion in its minimum enclosed area. The
cv2. findContours function in conjunction with another few
OpenCV utilities makes this very easy to accomplish. Further,
all the images were resized to (224 x 224 x 3) since they had
different dimensions. Algorithm 1 depicts the above process.

Global Contrast Normalization: In image processing, con-
trast is referred to as the luminance difference between bright
and dark pixels that makes an object distinguishable in an
image. Some images can have high contrast and some can have
low contrast, which results in losing important features and
having compact information in images respectively. Therefore,
we apply global contrast normalization by calculating the mean
of an image and subtracting it from each pixel, and then divide
each pixel by the standard deviation. All these calculations

Algorithm 1 Algorithm for Contour Detection and Extraction
of ROI
Input: Image
Qutput: Contours
for img in os.imgdirectory() do
if (img # None) then
img = cv2.imread(image path)
grey = img.cvtColor(RGB to Grey)
Thresh-Image = cv2.threshold(grey)
Contours = cv2.findContours(Thresh-Image)
end if
end for
return Contours

and operations are implemented using Numpy in python. This
helps in improving the performance of our model with better
feature extraction.

Morphological Transformation: Generally, while captur-
ing images, there is always a chance that image pixels could
be spatially disconnected, though it makes a minor fragment
of the image to be noisy. This problem can be solved using
morphological transformation. Here two functions of morpho-
logical transformation are useful they are dilation and erosion.
Dilation helps in connecting adjacent pixels by turning on
the pixel value, and erosion does the reverse. Thus, using the
dual of dilation and erosion simultaneously is considered an
efficient technique for noise reduction.

The outcome of image preprocessing is depicted in Fig.
2. In order to perform the above task, a sample image from
the dataset is taken which is shown in Fig. 2a. Subsequently,
Figures 2b, 2c¢ and 2d show the preprocessing steps. Finally,
Fig. 2e shows the results of image resizing.

C. Data Augmentation with WGAN:

Due to the highly unbalanced classes and limited data of
original skin lesion images in our dataset, it is prone to over-
fitting and poor performance if directly trained on CNNs.
Therefore, we decided to use data augmentation techniques
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Fig. 2. Image preprocessing Results

and generate synthetic data with GANs to overcome the above
challenges [14]. Fig. 3 shows the proposed GAN Architecture.
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Fig. 3. GAN Architecture to generate Synthetic images of skin lesions.

For training the generative adversarial networks (GANs), we
used the pre-processed training set images. GANs are designed
with two parts they are: Generator (G) and Discriminator
(D). Both of these structures are nothing but CNNs, and
they compete with each other in an adversarial way. After
training for few epochs, GANs can generate synthetic samples
that are similar/identical to the original data. They have great
potential as they can generate new identical images and can be
trained to emulate any data patterns or distributions. Z is the
input to G, which is a random noise vector generally picked
from a Gaussian distribution. Using this input G generates an
image, and the D tries to classify or distinguish if the output
image from the G is original (real image) or fake (generated
image). Upon training, G learns to mimic the original data
and generate images close to real images, thereby fooling
the discriminator. G learns by inspecting and analyzing every
step and updating its parameters. Below is the mathematical
expression (equation 1) showing the relation between G and
D,

G = minmax[Ex-p, [log(D(x))]+E; p, [log(1=D()]].
M

However, due to frequent mode collapses and often failing
to converge, training basic GAN is challenging. Many different
approaches have been attempted to overcome these challenges.
In this paper, we use the Wasserstein GAN with gradient

penalty to generate synthetic data. This special GAN uses
gradient penalty instead of weight clipping which was used
in the prior version of WGAN to impose on the Lipschitz
constraint, which is defined as a function f(¢,y) satisfy 1-
Lipschitz constraint for variable y on a set D €R? if there exists
L such that L > 0 where L is Lipschitz constant. Equation 2
depicts the above relation:

L=|f(t,y1) = f(t,y2)| < Lly1 = y2l. 2

Additionally, the use of gradient penalty simulates the Lip-
schitz function more tightly, therefore ensuring the accurate
calculation of Wasserstein distance. The new equation (equa-
tion 3) with gradient penalty showing the relation between
generator (G) and discriminator (D) is depicted below

L =By ; 10g(D(~ x)) = Ex-p, log(D(x)+
AEx e, [V:II(D@)2 - 1D, (3)

In our approach, we constructed both Critic and Generator
with five convolution layers with activation function as Leaky
ReLU with a negative slope of 0.2, including six Convolution
Transpose blocks and Leaky ReLU activation function of critic
and batch and normalization respectively. We have resized the
training set to 224 X 224 x 3 and fed it to the network for
training. The optimizer used here is Adam with a learning
rate, @ = 107, value of 8 = (0, 0.9) and the value of nepisic
= 5. A total of 27,055 new synthetic images were generated
of dimensions 224 x 224 x 3 and were added to the original
dataset. Table II depicts the metadata of the augmented dataset.

TABLE 11
DATASET DESCRIPTION
Lesion Type Original Data | Train | Test | (Train+A ted) Data
Melanocytic Nevi 6705 5822 883 5822
Melanoma 1113 1067 88 5355
Benign Keratosis 1099 1011 46 5055
Basal Cell Carcinoma 514 479 35 4790
Actinic Keratosis 327 297 30 4455
Vascular Lesions 142 129 13 5160
Dermatofibroma 115 107 8 5350
Total 10015 8912 1098 35967

A total of 27,055 new synthetic images were generated of
dimensions 224x224x3 and were added to the original dataset.
Let Iirain, Ivalidation denote the training and validation sets
of the image data before the training of the GAN. /4., denotes
the data generated by the GAN. We now split /4, into 2 sets:
IgenTest and Igentrain. The new training and validation sets
are denoted by equation 4:

[Itrain, Itest] = [Itrain + IgenTrain]» [Itest + IgenTest] (4)

The below Fig. 4 shows a sample of the synthetic data
generated by the W-GAN depicting each different lesion class.
Fig. 4a shows a sample of synthetic data generated for the
class Actinic Keratosis. Similarly, Figures 4b, 4c and 4d
show the samples of the synthetic data generated for the
classes Melanoma, Melanocytic Nevi and Vascular Lesions
respectively.



Fig. 4. Sample of Synthetic Data generated by W-GAN: (a) Actinic Keratosis,
(b) Melanoma, (c) Melanocytic Nevi, (d) Vascular Lesions

D. Training CNN model

The primary goal is to train a deep learning model that
can detect and classify different classes of skin lesions with
high accuracy and generalization. Here, we use a CNN model.
The main advantage of using CNNs is its potential to learn
and extract the best and relevant features for better image
classification. The following is represented in equation 5:

Glm,n) = (fxm)[m.n] =" > hlj,klflm—j.n—kl. (5)
J Kk

The input image is represented as f, and & represents the
filter or kernel in the equation as defined above. Here m and
n represent the indexes of rows and columns of the result
matrix, respectively. A CNN architecture is used, which acts
as a checkpoint for training the skin lesion prediction model.
Many pre-trained CNN architectures are available, such as
DenseNet-121, ResNet-50, VGG-16, AlexNet, etc. Here, we
use Transfer Learning with different CNN architectures; using
this is advantageous as it significantly reduces the training time
and gives us better performance even with smaller datasets.
Therefore, we us CNN architectures with Imagenet weights.
Using the existing model as a base on top of dense layers is
advantageous as it boosts learning by adding to the existing
knowledge, thus giving better classification results. The image
classifier is trained on top of base models to find the best
architecture with the best performance. Out of the above archi-
tectures, DenseNet-121 has achieved the maximum accuracy
of 92.2%.

E. Tensorflow Serving

The trained weights generated after training the model are
saved using the .save function of Pytorch. To develop a robust
prototype, the most efficient procedure is to convert the .pth file
extension into a .pb file extension. To achieve this conversion,
we use ONNX, which can convert a .pth file to a .pb file.
Finally, using the TensorFlow Serving, we can create an app
by embedding the trained TensorFlow model.

IV. RESULTS AND EXPERIMENTAL ANALYSIS

The following section emphasizes on testing the perfor-
mance of the SkinAid application along with the hardware
specifications used for training SkinAid.

A. Hardware specifications of the SkinAid App

The SkinAid app was tested on the conditions of 4GB RAM,
12GB free internal memory and 48MP android camera. The
minimum conditions for the efficient performance of SkinAid

are 2.5GB RAM, 150Mb storage and 8MP android camera.
Table III shows the hardware specifications of the SkinAid

app.

TABLE III
HARDWARE SPECIFICATIONS OF SKINAID

Hardware specification | Testing Conditions | Minimum Conditions
RAM 4GB 2.5GB
Internal Memory 12GB 150MB
Camera 48MP 8MP

Internet Connectivity 50Mbps Nil

B. User Interface and Android Application Results

This application is used as a tool for dermatologists to
identify the lesion’s nature. The user (dermatologist) first
identifies the lesion on his body and subsequently uses the
android camera to capture the lesion and stores it in the edge
device. Then the user opens up the SkinAid application and
identifies the visible symptoms. This is called the symptom
analysis step. In the next step, the user uploads the lesion
image and obtains the class of the lesion. Figure 5 shows the
presence of the lesion on the skin of the user and its successive
magnification. Similarly, Fig. 6 shows the deployment results
of SkinAid.
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Fig. 5. User Input on SkinAid Interface

C. Performance comparison of different CNN Architectures

The different architectures are firstly trained on the original
dataset and their accuracy is recorded. They are then trained
upon the augmented dataset involving both the conditions
of non pre-processed images and pre-processed images and
their accuracy is obtained. From Table IV, we can infer that
DenseNet-121 has the highest accuracy amounting to 92.2%.

D. Precision, Recall and F1-Score

From Table. IV, we can infer that the number of Images of
the class "Melanocytic Nevi" are greater in number than the
other classes. This implies that the W-GAN had a bigger latent
space as compared to the other classes. To be precise, the GAN
had more features to train on. As a result, the Precision, Recall
and F1-Scores of the class Melanocytic Nevi are greater than
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Fig. 6. Detection and Classification of Skin Lesion

TABLE IV

ACCURACIES (IN %) FOR VARIOUS DEEP LEARNING MODELS

SL.No Classifier Networks Accuracy (%)
Original Dataset Aug] ted Dataset
No Preprocessing | Preprocessed
1 VGG-16 63.3 70.5 83.7
2 ResNet-50 68.1 719 87.3
3 ResNet-101 68.7 713 87.8
4 MobileNct-v2 66.4 69.8 89.6
5 Inception-v3 69.2 73.1 90.8
6 DenseNet-121 70.4 73.0 92.2

the other classes. Similarly, as the number of images of Actinic
Keratosis class were less in number, it had a lesser Fl-score.
Table V depicts the precision, recall and F1-Score values of

DenseNet-121:

In this paper, a smartphone aided [oMT framework for skin
lesion detection and classification was formulated using GANs
and deep CNNs. The app has been put into meticulous testing
on various skin lesions belonging to the seven different classes
and has obtained good results on them. The SkinAid app can
be used by any healthcare professional across the globe without
the interference of internet to obtain preliminary analysis and
classification. It empowers the rural health centres by detecting

TABLE V

PRrRECISION, RECALL AND F1-SCcORE OF DENSENET-121

Class Precision | Recall | F1-Score
Actinic Keratosis 0.75 0.73 0.739
Basil Cell Carcinoma 0.75 0.80 0.774
Melanoma 0.85 0.73 0.785
Dermatofibroma 0.85 0.75 0.796
Melanocytic Nevi 0.94 0.96 0.949
Vascular Lesions 0.83 0.76 0.792
Benign Keratosis 0.78 0.71 0.743

V. CoNCLUSIONS AND FUTURE WORK

potential lesions in an early phase, thus reducing the cost of
treatment and providing awareness about skin cancers.

In the subsequent aspects of the proposed solution, the
SkinAid application can be improved to detect more classes of
skin lesions with improved accuracy and efficient image data.
Security and privacy issues in the Smart Health also needs
research within the given constraints.
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