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Abstract. Advancements in artificial intelligence, and especially deep learning technol-
ogy have given birth to a new era of multimedia forgery. Deepfake takes it to a whole
new level. This deep learning based technology creates new images with features which
have been acquired from a different set of images. The rapid evolution of Generative Ad-
versarial networks (GANs) provides an available route to create deepfakes. They generate
highly sophisticated and realistic images through deep learning and implement deepfake
using image-to-image translation. We propose a novel, memory-efficient lightweight
machine learning based deepfake detection method which is successfully deployed in the
IoT platform. A detection API is proposed along with the detection method. To the best
of the authors’ knowledge, this effort is the first ever for detecting highly sophisticated
GAN generated deepfake images at the edge. The novelty of the work is achieving a
considerable amount of accuracy with a short training time and inference at the edge
device. The total time for sending the image to the edge, detecting and result display
through the API is promising. Some discussion is also provided to improve accuracy and
to reduce the inference time. A comparative study is also made by performing a three-fold
textural analysis - computation of Shannon’s entropy, measurement of some of Haralick’s
texture features (like contrast, dissimilarity, homogeneity, correlation,) and study of the
histograms of the generated images. Even when generated fake images look similar to the
corresponding real images, the results present clear evidence that they differ significantly
from the real images in entropy, contrast, dissimilarity, homogeneity, and correlation.

Keywords: Deepfake · IoT · Edge Computing · Generative Adversarial Networks (GANs)
· Image-to-Image Translation · Texture Analysis · Shannon’s Entropy · Haralick Texture
Feature · CycleGAN · StarGAN

1 Introduction

Recently, there was a lot of excitement generated by Hollywood actor Tom Cruise’s TikTok
videos. Those videos went viral. They have more than 10M views in March 2021. The tech-
nology behind these videos is deepfake. The real Mr. Cruise was not present in those videos.
They were not shot with a real camera. The videos were synthetically generated from thousands
of his video clips or images by deepfake technology. Features of Mr. Cruise were learned by
deep neural networks from those photos and videos and deepfake videos were created through
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image-to-image translation. It is illegal to impersonate someone in social media. But there is
a disparity between the way technology is progressing and the way researchers and companies
are trying to combat it. As a result, newly advanced deepfake videos are spreading everyday
in social media like Facebook, Twitter, Instagram etc. Generative Adversarial Networks (GANs)
create such sophisticated images/videos, that it is hard to detect them. The Defense Advanced
Research Projects Agency (DARPA) of the U.S. government is collaborating with various
institutions to fight image forgery, especially deepfake [4]. The tech giants Facebook, Google,
Microsoft, and Amazon are also combating it.

In today’s world, social media play a crucial role in everyday life. Frequently checking social
media anywhere, anytime has become a habit. People can connect to the world from a small
hand held device easily. On the other side, multimedia forgery has spread immensely. These
altered images and videos are often being uploaded in social media. They can defame a person,
create political tension or spread rumors [29].

This motivates us to propose a machine learning (ML) based deepfake detection system,
which can be deployed in an end device of an IoT setting so that people can check the authenticity
of any image anytime, anywhere. This will help to stop circulating misinformation or rumors.
The overall system overview of the detection method in an IoT environment is shown in Fig.1.
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Fig. 1. System Overview of the Detection Method.

In general, GANs [9] have a generator and a discriminator as sub models, but they differ
in overall structure and working principles. Hence, fake images generated by different GANs
will differ from each other. Initially, we investigate fake images generated by two GANs -
CycleGAN [41] and StarGAN [7]. As they have different structures and different working
principles, as detailed in Table 1, deepfake image/video produced by CycleGAN will differ
from that of a StarGAN. We analyze GAN generated images at pixel level and compute several
textural features to obtain more information about the deepfake image textures. This textural
analysis helps us to propose a memory efficient Machine Learning (ML) based detection method
which adapts very well in an IoT environment.
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Table 1. Comparison Between CycleGAN And StarGAN

CycleGAN [41] StarGAN [7]
Network Structure 2 Generators + 2 Discriminators 2 Generators + 1 Discrimina-

tor
Number of Domains 2 ≥2
Loss Adversarial Loss + Forward Cycle

Consistency Loss + Backward Cycle
Consistency Loss

Adversarial Loss + Domain
Loss + Reconstruction Loss

Data for Training Unpaired Datasets Dataset with labeled attributes

The rest of the paper is organized as follows. Section 2 presents challenges and the motivation
behind this work. Section 3 focuses on the novel contributions of the paper. Section 4 is a survey
of related works in this field. GAN generated images are analyzed in detail in Section 5. Our
proposed detection method is described in Section 6. Experimental verification is discussed
in Section 7 while Section 8 presents the results. Section 9 draws conclusions and suggests
directions for future work.

2 Challenges of GAN Generated Deepfake Images

GANs have improved the quality of the generated images [6, 10, 17, 33]. Presently, GAN
approaches have achieved monumental success in creating synthetic images [15–17,36] and in
transferring image styles between different domains [41]. Image-to-image translation can be used
in changing seasons in a photo, photo enhancement, object transfiguration, etc. [41]. But, these
applications can also be used in negative ways. It is difficult for people to distinguish between
a GAN generated deepfake image and a real image with bare eyes. These fake images spread
misinformation through social media or news channels. Faking someone’s identity (“deepfake”)
in social media could have a socio-political impact along with financial and security hazards.

For more than a century, audio-visual media have presented the truth, recording the time and
history. But fake images, videos and audios change the perception of truth or reality. Thus it
is important to look into the threats posed by GAN-generated deepfake images or videos.

3 Novel Contributions of the Current Paper

This paper proposes a ML based technique of detecting GAN generated deepfake images,
implementable at an edge device. The novelties of this work are:
– To the best of our knowledge, this work is the first ever effort to detect GAN generated

deepfake images at an edge device.
– As edge devices are of limited resources (memory, architecture, storage etc.), high accuracy,

heavy computing models can not be deployed. We propose a novel ML based technique
which detects deepfake images at an edge device using texture analysis. This is done with
lighter computational load. Training time is much shorter and we achieve a considerate
amount of accuracy.

– A detection API is proposed to make the overall process automated. Fig. 2 shows the overall
Detection API diagram.

– We also suggest different ways of achieving higher accuracy.
– Some discussion is provided on strategies to improve inference time.
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– Various textural features like Shannon’s entropy, and Haralick’s texture features of GAN
generated deepfake images have been explored to understand the textural difference between
generated and real images. It helps us to propose a memory efficient detection method.

– A comparative study on histograms between StarGAN generated images and corresponding
real images has been performed to understand the effect of manipulation on color.
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Fig. 2. Detection Method API Diagram.

4 Related Prior Works

In the last decade, due to the availability of GPUs, the research on GAN generated images
has received a huge boost. Various areas of image manipulation such as high quality GAN
generated images [5,10,17,20,27,31,33,38], image-to-image translation [7,14,39,42], face
completion [13,21], various facial expression and attributes [8,23], domain transfer [19,34],
and style transfer [15,16] have received the attention of the computer vision community.

Researchers in image forensics and computer vision have been working to develop methods
in detecting those GAN generated fake images. In our previous work [28,29] we detected mostly
auto-encoder generated social media deepfake videos. An ensemble deep learning technique
via a Random Forest classifier has been proposed in [12]. Three shallow CNN structures have
been used to extract features from the images in YCbCr, HSV, and Lab color spaces. Two fully
connected (FC) networks with 2048 and 1024 nodes increase the total number of trainable
parameters. Parallel processing of the same image in three different color spaces makes the
process resource intensive. No IoT implementation effort has been made here. Fake faces have
been detected in [37] using a shallow neural network as a classifier and neuron activation has
been monitored using deep neural network. The model has been evaluated for four perturbation
attacks. This model is also resource intensive. It is not implemented in IoT settings. Gram
blocks have been added in ResNet structure in detecting fake faces in [22]. This is not an IoT
friendly network either, due to its heavyweight structure. Gray level co-occurrence matrices
(GLCM) have been calculated separately on RGB channels and used as the inputs of a DNN
structure [30]. GLCM calculation over three channels for an image makes it memory intensive.
No effort has been made to deploy it at edge either. Both GAN generated and man made fake
images have been detected in a DNN based ensemble network [35].

How a GAN generated image is different from a camera shot image from a color cue
perspective, has been investigated in [26]. GAN fingerprints on image attribution have been
noted in [40]. Some of the textural properties of fake images generated by StyleGAN and
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PGGAN have been explored in [24] along with their detection network. All these works claim
to have high accuracy, but no effort has been made to deploy them in IoT environments.

5 Analysis of GAN Generated Deepfake Images

In this section, we explore several first and second order statistical texture features of GAN
generated fake images, before detecting them in Section 6. A comparative study has also been
performed between the generated deepfake images and corresponding real images.

When a photo is shot in a digital camera, light from the object gets passed through the lens
and falls on the CMOS sensors which breaks the image into pixels after measuring the light
intensity and brightness. When a real image is passed through a GAN generator, it transforms
the image into a latent space vector. After a zero sum game with the discriminator it generates a
fake image. Hence, the way a digital camera takes a photo differs from the process of generation
of fake images by GANs. This motivates us to explore the textural features of GAN generated
images. We tested CycleGAN and StarGAN generated images.

5.1 Entropy Computation

In information theory, Shannon’s Entropy measures the uncertainty of a random variable’s
possible outcomes. For an image, it is more related to the texture or image information. The
difference in entropy between a generated image and its corresponding real image gives some
information on texture difference between them. Calculating the entropy of each pixel in an
image and summing over all possible gray scale pixels gives a scalar valueE of the entropy
of that image according to Eq. 1, and makes it easily comparable:

E=−
n−1∑
i=0

pilogbpi, (1)

where n denotes the number of gray levels, pi is the pixel probability for gray level i, and base
b is the base.

To calculate the entropy of an gray scale imageEgray, the space of any RGB image is first
changed to Gray scale. With same radiance of red (R), green (G), and blue (B) colors, green
always looks brightest among those three because the luminous efficiency tops at the green
zone of the visible light spectrum, red looks less bright and blue is the darkest. So when the
luminance (Y) of an RGB image is expressed as a function of R, G, and B, different weights are
applied in them to represent the color perception of real life as in Eq.2 [3]. During conversion of
RGB image to Gray scale image, Eq.2 is considered as the luminance of the image.

Y = 0.2125R+0.7154G+0.0721B (2)
To compare the entropies of generated and real images, the process described in Algorithm

1 has been used.

5.2 Haralick’s Texture Features Analysis

Texture is a spatial property of an image. Computing the Gray-Level Co-Occurrence Matrix
(GLCM) of an image is a well known method to capture the spatial dependence of gray level
values. It calculates the likelihood of a pixel value and its relationship with other pixels [2].
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Algorithm 1 Process of Comparing Entropy of Generated and Real Images for Section 5.
1: Input: Fake Image I1 and Real Image I2
2: Output:min,max,mean, and standard deviation of entropy difference
3: SAVE the real images with name ending real and fake images with ending word fake
4: SET input image directory input dir
5: DECLARE two Dictionaries ent fake dict and ent real dict with keys filename and entropy

for fake and real images respectively
6: DECLARE a variable comp entropy and initialize it to 0
7: DECLARE a list comp entropy list for storing the entropy difference and initialize it to
comp entropy list←NIL

8: ASSIGN a particular fake image to index f and a real image to index r
9: for file∈input dir do

10: Entropy is calculated.
11: if file contains the word real then
12: STORE the entropy in ent real dict along with filename
13: else
14: STORE the entropy in ent fake dict along with filename
15: end if
16: end for
17: for index r∈ent real dict do
18: for index f∈ent fake dict do
19: GET the fake image ent fake dict[filename] corresponding to the real image

ent real dict[filename].
20: COMPUTE comp entropy by taking the difference between entropies of the
21: corresponding fake and real images
22: STORE comp entropy in comp entropy list
23: end for
24: end for
25: COMPUTEmin,max,mean, and standard deviation of comp entropy list

To explore the fake images more closely, we calculate several Haralick’s Texture Fea-
tures [11] from the GLCM. The features we calculate are contrast, correlation, homogeneity,
and dissimilarity.

The GLCM is defined as a square matrix with elements as the frequency of occurrence of
pixels with gray levels at a certain distance and angle. Contrast, homogeneity, dissimilarity, and
correlation are defined in Eq. 3, 4, 5, and 6 respectively.

CON =
n−1∑
i,j=0

p(i,j)(i−j)2 (3)

HOM =
n−1∑
i,j=0

p(i,j)

(1+(i−j)2)
(4)

DIS =

n−1∑
i,j=0

p(i,j)|i−j| (5)

COR =
n−1∑
i,j=0

p(i,j)

(i−µi)(j−µj)√
(σ2i )(σ

2
j )

 (6)
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In the above expressions, n denotes number of gray levels, p(i,j) is the element of GLCM
for the distance between gray level values i and j, and µ and σ are the mean and variance of
the intensities of all gray values present, respectively.

We have followed the process in Algorithm 2 for comparing contrast, dissimilarity, homo-
geneity and correlation among real and generated images.

Algorithm 2 Process of Comparing Contrast, Dissimilarity, Homogeneity, and Correlation of
Generated and Real Images for Section 5.
1: Input: Fake Image I1 and Real Image I2
2: Output:min,max,mean, and standard deviation of GLCM properties difference
3: SAVE real images with name ending real and fake images with fake.
4: SET input image directory input dir
5: DECLARE two Dictionaries glcm prop fake dict and glcm prop real dict with keys
filename, contrast, dissimilarity, homogeneity, and correlation for fake and real images,
respectively.

6: DECLARE a list comp glcm prop for storing the GLCM properties and initialize it to
comp glcm prop←NIL.

7: DECLARE another list comp glcm prop list for storing the GLCM properties differences and
initialize it to comp glcm prop list←NIL.

8: ASSIGN a particular fake image to index f and a real image to index r.
9: for file∈input dir do

10: GLCM is calculated.
11: contrast, dissimilarity, homogeneity, and correlation are calculated.
12: if file contains the word real then
13: STORE contrast, dissimilarity, homogeneity, and correlation in

glcm prop real dict along with filename.
14: else
15: STORE contrast, dissimilarity, homogeneity, and correlation in

glcm prop fake dict along with filename.
16: end if
17: end for
18: for index r∈glcm prop real dict do
19: for index f∈glcm prop fake dict do
20: GET glcm prop fake dict[filename] corresponding to

glcm prop real dict[filename].
21: COMPUTE comp glcm prop by taking the difference between contrast, dissimilarity,

homogeneity, and correlation of the corresponding fake and real images.
22: STORE comp glcm prop in comp glcm prop list
23: end for
24: end for
25: COMPUTEmin,max,mean, and standard deviation of comp glcm prop list.

5.3 Histogram Analysis

We explore the histograms of the generated images and compare them with those of real images.
Histograms for the R, G, and B channels are plotted separately. They show a comparative
graphical representation of the distribution of intensity of a generated image and corresponding
real image for each channel.
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6 The Proposed Novel Deepfake Detection Method at Edge Computing
Platform

In this section, we propose a novel machine learning based model for detecting GAN generated
images at an edge device using textural features of images. The process is performed automat-
ically through our proposed detection API. The reasons behind this approach are multi-fold:
– The computation cost is very low, therefore it is a good fit for less resource IoT settings.
– As the the approach is based on gray level co-occurrence at pixel locations, it is generic. It

can be applied to any type of GAN.

6.1 System Level Representation

The system level overview of the detection method is shown in Fig. 1. In this IoT environment,
end users or clients are connected to the edge device. The edge device is connected to the cloud
for data storage. Retraining of the model can be done at the cloud with the stored images and
corresponding predictions at a later stage, if needed. The detection process is initiated when
an image from social media (uploaded by any person of bad intent [1]), to be detected, is sent
to the edge platform through our proposed ‘Detection API’. Once the image is detected by
the model, the detection score goes back to its source. The detection score is also stored in the
cloud along with the image to be used for future retraining of the model. Fig. 2 shows a detailed
representation of the concept when a client sends the image to the edge device.

6.2 Detection Methodology at the Edge Platform

Fig. 3 shows the overall diagram of the detection model at edge. It is an automatic workflow.
When an user wants to check any picture from social media accounts for authenticity, he calls the
Detection API and sends the image to the edge device. Once the image reaches the edge device
it is saved in a folder and the GLCM followed by Haralick’s texture features are calculated from
the corresponding gray level image of the colored image.

Edge Platform

Global Features Extraction
(From GLCM)

Contrast
Dissimilarity

Energy
Homogeneity
Correlation

Features Set
Classification

LightGBM 
Classifier

Detection Decision 

Features Extraction

Detection  API
Fake

Fake

Client

Fig. 3. Overall Workflow Diagram at Edge Platform.

A features set is created from those features. We compute five Haralick’s texture features.
The texture features calculated at this stage are contrast, dissimilarity, homogeneity, energy, and
correlation. We calculate those features from the GLCM for four distances at d=1,2,3,5 and
three angles θ=0,π/4,π/2 to generate the feature vector. After the feature extraction, a machine
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learning algorithm is used to classify the image. As in IoT environment, the resources are limited,
we carefully choose our classifier as LightGBM with boosting type ‘Gradient Boosting Decision
Tree (gbdt)’. It is a tree based algorithm. The advantage of using this classifier over others are:
– The algorithm [18] uses histograms to learn. It is cost effective because for a histogram based

algorithm the time complexity is proportional to the number of bins, not to the data volume
once histograms are made.

– Use of discrete bins reduces the memory usage which is a limiting factor at an edge device.
– Training is very fast as it is distributed.

6.3 Phases of Detection Method

The overall detection process has two phases: Training and Testing or Inferring.
– Training Phase: In the training phase, the classifier learns how to detect the fake images.

Initial training has been done on a PC. The details are mentioned in Section 7. At a later stage,
if retraining is needed, it can be done in the cloud.

– Testing Phase: Testing phase is where the unknown samples are tested. This is implemented
at the edge device. The testing phase is performed through our proposed API.

6.4 Detection API

We propose a Detection API hosted at the edge device. The workflow of the API is shown in
Fig. 4. The goal is to make the API lighter and faster to work at an edge device.

base 64 
Encoding

Detection API
Protocol : http
Port # : 8080

base 64 
Decoding

Save
Image in a 
Temporary 

Folder

Filename Generation
filename = randomG() + timestamp

Get Fully Qualified 
Image Path 

Call 
Detection.py

Get the 
Result

Delete the 
Saved Image

Real / Fake

Input Output

Fig. 4. Detection API Workflow.

6.5 Detection Metrics

To visualize the classification performance of our detection model, we define the Confusion
Matrix (CM) as in Table 2 [29]. Detecting real or GAN generated fake images is a binary
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classification problem, the corresponding CM is a 2×2 matrix. To evaluate the detection model,
various metrics have been computed from CM according to the following expressions:

Accuracy =

(
TP+TN

TP+TN+FP+FN

)
×100% (7)

Precision =

(
TP

TP+FP

)
×100% (8)

Recall =

(
TP

TP+FN

)
×100% (9)

F1−score =

 2
1

Precision
+

1

Recall

×100% (10)

Table 2. Confusion Matrix

Predicted Label
True Positive (TP): False Negative (FN):
Reality : Fake Reality : Fake

True Label Model predicted : Fake Model predicted : Real
False Positive (FP): True Negative (TN):
Reality : Real Reality : Real
Model predicted : Fake Model predicted : Real

7 Experiments

7.1 Datasets

StarGAN and CycleGAN datasets have been chosen to compare the fake images generated by
different GANs. The CycleGAN dataset consists of images which are generated by translating
from one image domain to another image domain, whereas StarGAN generates multi-domain
images on the fly by changing physical attributes and with different expressions.

StarGAN Dataset: To generate this dataset we follow the process as in [7]. Five different
physical attributes, such as different hair color ( black, blond, brown), gender, and age have been
chosen. No expression or mood change has been done. To generate the images by StarGAN, the
first 6,000 images from CelebA [25] dataset have been chosen. Each real image generates five
images, so a total of 30,000 images are generated. 500 fake images along with corresponding
100 real images have been tested to compare textural properties of fake images with those of real
images. For the detection model a total of 60,000 images (30,000 fake and 30,000 real) have
been used for training and validation. Up-sampling of the minority class has been done to provide
a balanced dataset. Fig. 5 shows some sample StarGAN generated images used in the experiment.

CycleGAN Dataset: To make this dataset, the GitHub page of the original paper has been
followed [14,41]. Real images for CycleGAN have been collected from ImageNet, Wikiart,
and CMP Facades dataset [32], as suggested by the original paper. A total of 9,809 images have
been generated from 9,812 real images. Table 3 presents the detailed list of the dataset generated.
Some of the generated CycleGAN images are shown in Fig. 6.
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Fig. 5. Sample StarGAN Generated Images.

Table 3. Generated CycleGAN Dataset

apple2orange horse2zebra monet2photo vangogh ukiyoe cezanne facades
Real 2237 2349 671 1738 194 295 343

Generated 2239 2348 672 1736 193 294 342

Real

Generated

Fig. 6. Sample CycleGAN Generated Images.

7.2 GAN Generated Image Analysis

Once the datasets are generated, we evaluate various texture statistics for those GAN generated
fake images and their corresponding real images. We perform three different experiments with
the images.

In the first part, we compute the entropy of the fake images generated by both GANs and
compare the result with corresponding real images. Minimum, maximum, mean and standard
deviation of the entropy difference between the fake images and real images are also calculated.
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We evaluate 2,239 “apple2orange”, 2,348 “horse2zebra”, 672 “monet2photo”, 1,736 “vangogh”,
193 “ukiyoe”, 294 “cezzane”, 342 “facades”, and 500 StarGAN images. This provides a
comparative idea of fakeness of the two sets of fake images.

For the same set of images, GLCM is calculated. Then four Haralick’s texture features -
contrast, homogeneity, dissimilarity and correlation - are computed and compared with those of
corresponding real images. To provide an inter-GAN comparison, the same statistical parameters
of the dataset are calculated for both GANs.

Histograms for the R, G, and B channels are observed separately for generated and real
images. Histograms of generated image (which has same feature as the real image) are compared
with the corresponding histograms of real image e.g., if the sample input image is a black haired
young male, comparison is made only when the generated image has the same features (‘black
haired young male’). For CycleGAN this part is skipped, as the generated image is different
than the real image. This has been implemented in Python.

7.3 Implementation of Proposed Detection Method of GAN Generated Images at
an Edge Computing Platform

Single Board Computer Platform: The detection model has been implemented on a 4GB
Raspberry pi 4, a single board computer. The input image has been provided through the
proposed Detection API and the detection result has been given back through the API.

Initially, the training has been done on a PC with 16GB total memory and Intel Core i7-9750
processor. No GPU was used. 48,000 images (24,000 deepfake images generated by Star GAN
and 24,000 real images) have been utilized for training and 12,000 images have been used for
validation of the model. Total time for training and validation of the model was 27 minutes.
Before constructing the features set, the image is converted to gray level and then resized to
256×256. The features set is constructed from Haralick’s texture features. The feature set is
of size 48,000×30 for the training data. The learning rate of the classifier is kept at 0.05, the
maximum depth of 600 trees is 13, and the number of leaves of each tree is kept at 8,500. The
boosting algorithm is chosen to be ‘Gradient Boosting Decision Tree’. The detection part has
been implemented in Python and the API part in Java.

8 Results

8.1 Analysis of GAN Generated Images

In this section, the observations after analyzing and comparing two GAN generated images
with real images are reported in detail.

Entropy: The entropy difference of the generated image and its corresponding real image for
both GANs is shown in Table 5. The abbreviated terms of Table 5 are explained in Table 4.

The entropy difference has been computed by taking the difference of generated images from
its corresponding real images. Some results give positive entropy difference and some results
negative.
– Negative entropy difference means that the entropy of the generated image is greater than its

corresponding real image and is denoted by∆E2 in Table 5.
– Positive entropy difference means that the entropy of the generated image is lower than its

corresponding real image and is denoted by∆E1 in Table 5.
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Table 4. Definition of Abbreviated Terms Of Table 5

Term Meaning
∆E Entropy difference of real image and generated imageER−EF

∆E1 ∆E whenEF <ER

∆E2 ∆E whenEF >ER

∆Emean Mean Entropy Difference of Test Data Distribution
∆Estd Standard Deviation of Entropy Difference of Test Data Distribution

Table 5. Entropy Differences between Real Images and GAN Generated Fake Images

GAN Data ∆E1 ∆E2 ∆Emean ∆Estd

apple2orange 1.8177 -4.6379 0.3965 0.7221
horse2zebra 0.7999 -2.3821 0.0514 0.2862

monet 0.5779 -0.83646 0.01031 0.2428
Cycle vangogh 0.5779 -2.3413 0.1046 0.3519
GAN ukiyoe 0.4335 -0.8343 0.0217 0.2016

facades 1.448 -3.4454 0.4901 1.3729
cezanne 0.6253 -1.6657 -0.0171 0.3158

StarGAN 0.4579 -1.3998 -0.1062 0.2310

We tested entropy difference over a certain number of images. Table 5 shows the trend of
entropy distribution of a particular GAN generated fake dataset, but changing the images will
definitely change the values of maximum, minimum, mean, and standard deviation of entropy
difference. StarGAN generates images with lower |∆E| on average. The standard deviation
of entropy difference in Table 5 also follows the same trend. Other than the ukiyoe dataset,
all cases of CycleGAN have larger standard deviation of entropy difference than StarGAN. It
means that CycleGAN generates a wide variety of fake images with greater∆E than StarGAN.

Entropy of an image is the randomness around the pixels of an image. It gives certain informa-
tion on image texture. Lower |∆E| of StarGAN generated images prove that the texture of fake
images varies lesser in StarGAN generated images than CycleGAN generated images. StarGAN
generates more robust (less varied entropy than real images) fake images than CycleGAN.

Haralick’s Texture Features: Table 6 and Table 7 show the differences of texture features
between generated image and the corresponding real image. The average difference of contrast,
dissimilarity, correlation, and homogeneity are much larger in CycleGAN than StarGAN be-
cause CycleGAN generated images are very different from the original images. But StarGAN
generated images have varied texture features than real images too. Therefore, we choose these
textural features along with energy (inversely proportional to entropy) in forming the features
set for detecting fake images.

Histogram: Third, we observe histograms for the StarGAN generated images. They are shown
in Figs. 7(a), 7(b), and 7(c). In each case, histograms for red, green, and blue channels of the
generated images differ from those of the real images with the same attributes. It means that even
if the generated image looks the same as the real image with bare eyes, the color distributions
are not the same for those two images.

So, GAN generated images vary in textures and colors from the real images. This observation
has been utilized in detecting GAN generated images.
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Table 6. Difference of Texture Properties of GAN Generated Images and Real Images - I

Contrast Dissimilarity Homogeneity Correlation
GAN Data ∆min ∆max ∆min ∆max ∆min ∆max ∆min ∆max

apple2orange 0.1759 4067.51 0.0025 19.2035 0.6417 4.0771 0.6303 3.3104
horse2zebra 0.0089 16649.09 0.0002 65.8922 0.00001 0.3731 0.8593 6.9169

monet 0.9867 2559.67 0.0026 18.8634 0.00001 0.4919 0.0004 0.3023
Cycle vangogh 0.6193 2532.19 0.0025 27.3638 0.0002 0.6615 0.0004 0.6378
GAN ukiyoe 1.2918 2343.93 0.03824 23.4140 0.00005 0.4478 0.0003 0.4959

facades 1.2550 1982.35 0.0061 21.2044 0.0014 0.6379 0.00005 0.3006
cezanne 1.0449 1964.87 0.0071 19.0935 0.00003 0.4021 0.0016 0.4070
Average 0.7689 4585.66 0.0085 27.8621 0.0919 1.0131 0.2132 1.7673

StarGAN 0.0003 3175.85 0.0026 24.2543 0.0001 0.4029 0.0001 0.3212
∆→(Difference of a texture property)

Table 7. Difference of Texture Properties of GAN Generated Images and Real Images-II

Contrast Dissimilarity Homogeneity Correlation
GAN Data ∆mean ∆std ∆mean ∆std ∆mean ∆std ∆mean ∆std

apple2orange 353.3008 339.2468 3.6820 3.0643 0.0964 0.0108 0.0547 0.0522
horse2zebra 1241.3559 1579.4719 8.7607 8.4865 0.0364 0.0482 0.0001 0.1554

monet 259.5098 297.9325 2.9529 2.4031 0.0553 0.0605 0.0455 0.0401
Cycle vangogh 663.8957 433.3669 10.1373 5.8673 0.1118 0.0958 0.1661 0.1022
GAN ukiyoe 935.4261 510.1807 9.7288 4.7253 0.0787 0.0849 0.1719 0.0871

facades 479.9753 447.9612 6.2992 4.1170 0.2592 0.1790 0.0609 0.0524
cezanne 542.8389 340.8045 7.1889 4.1682 0.0918 0.0806 0.1110 0.0781
Average 639.4718 513.8523 6.9642 4.6902 0.1042 0.0800 0.0872 0.0811

StarGAN 813.0842 679.7914 6.8765 4.9921 0.0729 0.0663 0.0787 0.0579
∆→(Difference of a texture property)
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Fig. 7. Histogram Comparison of StarGAN Generated Images and Real Images.
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8.2 Evaluation of Edge Detection Model

The performance of the model has been evaluated over 2,000 total test images. 50% of the
images are fake and the rest are real. The Confusion Matrix is generated from these images,
as shown in Fig. 8(a). We calculate Precision, Recall, and F1-score from CM using Eqs. 8, 9,
and 10. Table 8 shows the classification report of the model.

(1, 2000, 30)
(2000, 30)
Accuracy =  0.898
Text(33.0, 0.5, 'True Label')

Firefox https://vkdxtybn468-496ff2e9c6d22116-0-colab.googleusercontent.com/...

1 of 1 6/5/2021, 8:43 AM

(a) Confusion Matrix. (b) ROC Curve

Fig. 8. Histogram Comparison of StarGAN Generated Images and Real Image.

Table 8. Classification Report of Test Images.

Test Images Precision% Recall% F1-score%
1000 Fake 88.0 92.0 90.0
1000 Real 91.0 88.0 90.0

Macro Average 90.0 90.0 90.0
Weighted Average 90.0 90.0 90.0

Total 2000 Accuracy % 90.0
Total 2000 AUC Score % 96.0

To evaluate the model more accurately, we draw the Receiver Operating Characteristic (ROC)
curve, as shown in Fig. 8(b). AUC score for the model is 96%.

Table 9 shows the relation between the accuracy, tree structure, boosting type algorithm
and size of the model. We vary the parameters to have a model which can be deployed at the
Raspberry pi and would also have high accuracy. The final structure is chosen with an accuracy
of 90%, 600 trees, and each tree with a maximum depth of 13 and number of leaves 8,500.
Training time for our model is 27 minutes. Accuracy is improved by increasing the number
of trees in the algorithm. Maximum tree depth and number of leaves also influence the accuracy.
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Table 9. Accuracy Variation with Tree Structure

Number Max Tree Number of Algorithm Accuracy Model Size
of Trees Depth Leaves Boosting % (MB)

100 8 255 dart∗ 79.4 3.2
100 10 1000 dart 80.4 6.7
100 11 2500 dart 81.8 12.4
100 12 4200 dart 82.1 15.8
100 13 8500 dart 82.9 19.0
100 14 17000 dart 82.7 22.2
100 13 8500 gbdt∗ 85.5 14.3
100 14 17000 gbdt 85.9 16.4
200 13 8500 gbdt 87.4 21.5
300 13 8500 gbdt 88.2 27.3
400 13 8500 gbdt 89.0 32.8
600 13 8500 gbdt 90.0 43.7

dart∗ (Dropouts meet Multiple Additive Regression Trees)
gbdt∗ (Gradient Boosting Decision Tree)

9 Conclusion and Future Work

It is challenging to implement a computation-intensive computer vision problem like deepfake
detection in an IoT environment. We tried to keep the computation as light as possible. We chose
only 30 features for each image so that we could infer at a limited resource IoT device with
considerable accuracy. Accuracy can be improved by increasing the number of trees and also by
changing the feature set. With more features, the accuracy will be higher and the generalization
of the model will be achieved. To improve the inference time instead of sending the image in
base64 format, binary image can be sent. As a future work, generalization of the model and
higher accuracy can be achieved along with improved inference time.
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