

Abstract—High throughput in data communication is of great
significance for GPU accelerated systems in order to fully exploit
thread level parallelism. Different traffic patterns between GPU
NoCs and CPU NoCs lead to suboptimal performance in GPU
NoCs that directly adapt from CPU NoCs. Moreover, for GPU
NoCs, two networks are usually employed to avoid deadlocks
between requests and reply messages. Another important feature
of GPU NoCs is the unbalanced traffic load between request
network and reply network. This feature often causes the reply
network to be congested while the request network is idle. Based
on these features of GPU NoCs, this paper proposes a technique
called Stop Request Network (SRN). SRN works by stopping
request network to reduce energy cost when congestion occurs in
the reply network. Our evaluation results show that SRN can save
power by 10% with negligible performance degradation.

I. INTRODUCTION

Increasing core numbers in GPU accelerated computing
systems provide opportunities to process a large number of
threads in parallel to achieve high performance. However, this
also brings challenges for researchers to solve the
accompanying cost problems. On-chip networks which serve as
GPUs’ communication backbone affect GPUs’ performance
and cost significantly [1], [2], [3], [6]. On the one hand, high
throughput is need for data communication to deeply exploit
thread level parallelism. On the other hand, network cost such
as area and power consumption needs to be reduced in order to
incorporate more cores. GPUs have been shown to be power
hungry and it is imperative to develop techniques which can
reduce power cost with minimal performance degradation.

Topology is the way routers are connected with each other.
Typical topologies used in NoCs include mesh, ring,
concentrated mesh or torus. Topology plays a critical role in
network performance and cost. Different from CPU-based
multi-processor systems, GPUs exhibit a many-to-few-to-many
traffic pattern which defines how data flows between many
computing cores and a few memory controllers (MCs). Due to
the simplicity in design, meshes are most widely used in NoCs.
However, hot spots are often created in memory controller
connected routers due to the many-to-few-to-many traffic
pattern. Because the majority of messages are read messages
and read reply messages usually have larger payload size, the
reply network accounts for most of the network traffic load.
When congestion occurs at the reply network hotspots (i.e.
MCs), memory controllers cannot service request messages
anymore because their buffers are fully occupied. As a result,
the request messages are piled up in the network buffers,
consuming a large amount of static energy.

This paper proposes a technique for power savings by
stopping the request network when we detect that the reply
network is congested. After some time interval, the request
network is restarted if the congestion is relieved. Our objective
is to reduce power cost without performance degradation. Our
simulation results show that our technique helps to reduce
power consumption by 10% on the average, with minimal
negative impact on system performance. Our results
demonstrate the effectiveness of the proposed technique in
exploring performance and cost tradeoffs for GPGPU NoCs.

The rest of this paper is organized as follows: Section II
introduces background and motivation; Section III describes
our proposed design in detail; Section IV presents our
experimental results and related analysis and we conclude this
paper in Section V.

II. BACKGROUND AND MOTIVATION

A. GPU Traffic Pattern

Figure 1 shows a typical mesh NoC for GPGPUs. There are
28 compute cores and 8 memory controllers. Data packets are
transmitted between the compute cores and memory
controllers. A memory controller and a L2 cache are co-located
together and are connected to the network through a MC router.
If a L1 cache miss occurs, a request message is sent to L2 cache.
Requested data will be returned to the computing core if it is
found in L2. Otherwise, the request will be directed to the off-
chip SDRAM to retrieve the data. There is limited
communication between computing cores (L1 to L1) in GPUs and
this is mostly cache coherency signals between L1 caches. Because
the amount of this type of traffic is small, L1-to-L1
communication in GPU is often removed and replaced by L1-
to-L2 transfer followed by L2-to-L1 transfer [5] [10].
Therefore, GPU network traffic usually consists of two
categories: (1) requests received by memory controllers from
computing cores; and (2) reply messages received by
computing cores from memory controllers. GPU NoCs exhibit
a many-to-few (request) and few-to-many (reply) traffic pattern
because the number of computing cores is much larger
compared with that of memory controllers.

Request and reply networks in the GPU NoCs exhibit
imbalance in their traffic loads. There are much more read
messages than write messages. In addition, the size of read
reply messages is much larger than that of read request
messages. Prior studies have shown that 70% of the total on-
chip traffic are reply messages [12, 13]. Because the sources of
reply messages are a few memory controllers, network

Xianwei Cheng1, Hui Zhao1, Saraju P. Mohanty1, Juan Fang2
1Computer Science and Engineering Department, University of North Texas

xianweicheng@my.unt.edu, {hui.zhao,saraju.mohanty}@unt.edu
2Faculty of Information Technology, Beijing University of Technology

fangjuan@bjut.edu.cn

Improving GPU NoC Power Efficiency through Dynamic

Bandwidth Allocation

Figure 1. A typical GPU NoC with a mesh topology.

bottlenecks are usually created in routers connected with those
memory controllers. Our goal for improving GPU NoC design
in this paper is to improve network power efficiency without
performance degradation. We propose to stop transmitting
request messages if reply messages are blocked at the memory
controllers due to congestion. By power gating the routers in
the request network, we can save power in request network
when the reply network is congested and then restart the request
network when congestion in the reply network is relieved.

B. Limitations in Current GPU NoCs

Crossbars are mostly employed by industry in designing
GPU NoCs. Although crossbars provide good throughput by
allowing no-blocking connectivity between each pair of nodes,
they are not scalable to large networks. The cost of crossbars
grow exponentially as the number of cores increases and this
limits the application of crossbars to large GPU systems. Mesh
topology has been most widely proposed for designing NoC for
GPUs [4], [7], [9], [10], due to its regularity, scalability, and
simplicity in layout. To avoid protocol deadlock between
request and reply messages, almost all mesh-based NoCs need
two physical networks except a logically positioned single
network [4].

However, mesh topology exhibits inherent drawbacks with
regard to performance and cost despite its wide application: (1)
At MC connected routers, which is usually the network
bottleneck, there is severe interference between
injection/ejection packets and bypassing packets. Packet
injection and ejection is only part of functions that MC
connected router need to implement. These routers also need to
route bypassing packets to their neighbors. Therefore, these
different types of packets compete for the router resource and
link bandwidth. As a result, congestion is generated especially
in the reply network; (2) The position of MCs significantly
influences network performance. That is due to the interaction
between the many-to-few-to-many traffic pattern and DOR
routing. Trying to find an optimal MC placement increases the
NoC design complexity; (3) The utilization of network resource
in a mesh network is inefficient. Mesh networks’ evenly
distribute resources to all routers, such as routers ports and links
to simplify the design. However uneven traffic pattern of GPUs
causes over provisioning of resource and power. Some regions
tend to be much more congested than the rest of the network.

As a result, static power is wasted in regions that are not
utilized. All these limitations demand more power efficient
design for mesh-based GPU NoCs.

III. DESIGN OF SRN

A. Opportunities and Challenges

We propose to take advantage of two inherent features of
GPU NoCs: (1) Imbalance between request and reply network
traffic and the reply network carries most of the traffic load. (2)
In reply network, the traffic pattern is few-to-many, i.e., few
memory-controllers send reply packets to many compute cores.
Both of these features tend to cause congestions in the reply
network, with the request network being idle. We propose a
technique to stop the request network to save power when
congestion is detected in the reply network. When the reply
network congestion is relieved, we immediately restart the
request network. This technique can minimally affect the
network performance but improve the power efficiency.

GPUs achieve high performance executing parallel
applications because all cores can run threads in parallel and
there is a large pool of runnable threads to hide communication
delay. If the communication delay cannot overlap with
computation, the performance will degrade due to stalled cores
waiting for data from memory controllers. Therefore, one
challenge is to appropriately determine stop and restart time in
order to avoid unnecessary stall caused by our mechanism.
Another challenge is keeping the frequency of stop and restart
at an appropriate frequency. Stop and restart the request
network incurs extra overhead in network control and
synchronization. Frequent stop and restart may result in
thrashing and have a negative effect on performance and power
efficiency. Therefore, we need to find proper metrics to
determine the appropriate time to stop and restart of request
network.

B. Design of SRN

As has been shown by prior work [12, 13], 70% of GPU
traffic load is reply messages. We observe that when congestion
occurs, a large number of reply messages are blocked in MC
output queues, waiting to be injected into the network. In case
that a MC output queue is full, the MC will stall. Therefore, the
performance of the whole network can be improved by
increasing reply network throughput. On the other hand,
blocked reply messages provide the request network some slack
to tolerate delay. Network performance will not suffer from
degradation in this case because no incoming request messages
will be served since the MC already stalls. However, the request
network needs to be promptly restarted when the congestion in the
reply network is relieved. Otherwise, stopped request network
will incur extra stalls in the computing cores and leads to
performance degradation. Therefore, we need to first find
proper metrics and mechanisms to monitor network status and
determine the duration for stopping the request network.

(i) Stop Metrics

Selecting a metric to evaluate the benefit of stopping the
request network in epochs of time is a critical part of our design.
The desired metric needs to be able to reflect network slack.
The slack time represents reply packets’ congestion status at
output queues of memory controllers. We experimented with
several metrics, such as all MCs’ maximum output queue

occupancy and the average output queue occupancy. However,
we found that neither of these metrics can accurately capture
the uneven occupancy of the output queues. The maximum
output queue occupancy reflects only one of the MCs local
congestion status but cannot show the global congestion
situation. It is not an accurate metric because the whole network
may not be congested even if one of the MC is very congested.
Similarly, the average MC output queue occupancy is not
accurate because the whole network may not be busy even if
multiple output queues are full. To accurately measure the network
congestion, we choose a combination of two metrics that can avoid
bias caused by unbalanced output occupancy. The first metric is
individual MC’s output queue occupancy. We label one MC to be
congested if its occupancy is greater than a threshold value Th_queue.
The second metric is the number of congested MCs. Only when
the total number of congested MCs is above a threshold value
Th_MC, the reply network is considered to be congested and
the actions are taken to stop the request network. By using two
metrics, we can detect global congestion status of MCs instead
of local ones which ensures the accuracy. We set up both
thresholds Th_queue and Th_MC using empirical values.

(ii) Restart Metrics

We stop the request network when slack is detected.
However, to ensure that our mechanism does not introduce extra
stall time in computing cores, the request network needs to be
restarted immediately once congestion is relieved. Therefore, in
this work, the metric of deciding the time for network restart is
also needed. Different from the network stop metrics, we evaluate
the input queue of MCs for network restart. We consider both the
individual input occupancy and the occupancy of all input queues.
Similarly, we use empirical values to set thresholds for the
evaluation. Once it is determined that restart needs to be initiated,
a RESTART signal is sent to cores from MCs. To avoid the
overhead caused by thrashing that stop and restart are too
frequently called, we use a HOLD TIME to enforce that the
request network does not transit to a new state unless certain
time has elapsed.

IV. EXPERIMENTAL RESULTS

Our proposed SRN technique is evaluated regarding
performance and power consumption. GPGPU-Sim [7] is used
to simulate our proposed technique. The simulated GPGPU
system consists of an 8x8 2D mesh connecting 56 computing
cores and 8 MCs. Routers in the network employ conventional
5 ports VC-based micro-architecture.

TABEL I. System Configuration

Number of Computing Cores 56 cores

Number of Memory Controllers 8

MSHR per Core 64

Warp Size 32

SIMD Pipeline Width 8

Number of Threads per Core 1024

Number of CTAs/Core 8

Constant Cache Size/Core 8KB

Texture Cache Size/Core 8KB

L1 Cache Size/Core 16KB

L2 Cache Size/Core 128KB

Number of Registers/Core 16384

Warp Scheduler Greedy-Then-Oldest

Shared Memory 48 KB

Memory Scheduler FR-FCFS

Memory Model 8 MCs, 924 MHz

NoC Channel Width 128 bit

NoC Router Pipeline Stage 2

Number of VC per Port 2

VC Buffer Depth 3

Subnet 2

A. Impact on Performance

As shown in Figure2, the performance of all the benchmarks
are more than 90% of the baseline system. There are several
benchmarks, such as WP and BP, that achieve better
performance than the baseline. This is because after we stop
request network, the contention of reply network has reduced
and the network throughput gets improved. As a result, the SRN
can achieve better performance than baseline. On the average,
SRC achieves performance that is 99% of that of the baseline.
This means our technique has negligible performance
degradation. We also compare our work with the state-of-the-
art GPU NoC design of Checker Board [3] and our design
achieves 12% better performance than the Checker Board.

Figure 2. Performance.

TABLE II. Benchmark Description

Abbreviation Description Injection Rate

LPS 3D Laplace Solver 2.14%

MUM MUMer GPU 1.31%

NN Neural Network 1.30%

WP Weather Prediction 1.38%

PR Parallel Reduction 1.16%

SP Scalar Product 1.43%

BP Back Propagation 3.55%

BFS Breadth First Search 1.30%

HW Heart Wall 2.16%

PF Path Finder 1.74%

SR Srad 1.34%

SC Stream Cluster 2.98%

-0.3

0.2

0.7

1.2

Baseline Stop Req Net CKBD

B. Impact on Energy

The SRN aims to save network power by stopping the
request network when the reply network is congested. As
shown in Figure 3, our technique can reduce energy cost by
about 10% averagely compared with baseline. For benchmark
SC, the energy savings can be 35%. The result shows that the
SRN can effectively reduce energy cost in the GPU network.

C. Impact on Packet Latency

We also analyzed network packet latency. As shown in

Figure 4, the packet latency gets reduced for most of the

benchmarks. This is because after we stop the request network,

the congestion of the reply network gets decreased, so the

latency gets reduced as a result. On the average, the packet

latency gets reduced by about 9%. Benchmark PF and SC

achieve the largest latency reduction with their packet latency

reduced by 31% and 44% respectively.

Figure 3. Energy Consumption.

Figure 4. Packet Latency.

D. Impact on EDP

Finally, we evaluate the Energy Delay Product (EDP), the
result is shown in Figure 5. On average, the EDP reduction is
about 17%. The best result is achieved by benchmark SC which
is about 64%. The result shows that the proposed SRN
technique can effectively reduce the power consumption and
packet latency.

V. CONCLUSION

 In this work, we propose a technique called SRN by
stopping the request network when network slack is detected to
save energy based on the special characteristics of GPU NoCs.
Our evaluation results show that the technique proposed can

effectively reduce network energy with negligible performance
degradation.

Figure 5. Energy Delay Product.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable,

commodity data center network architecture”, in ACM

SIGCOMM Computer Communication Review, 2008.

[2] M. Ahn and E. J. Kim, “Pseudo-Circuit: Accelerating

Communication for On-Chip Interconnection Networks”, in

MICRO, 2010.

[3] A. Bakhoda, J. Kim, and T. M. Aamodt, "Throughput-Effective

On-Chip Networks for Manycore Accelerator", in MICRO,

2010.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S. H. Lee,

and K. Skadron. “Rodinia: A Benchmark Suite for

Heterogeneous Computing”, in IISWC. 2009

[5] NVIDIA. CUDA C/C++ SDK Code Samples. in

http://developer.nvidia.com/cuda-cc-sdk-code-samples. 2011.

[6] H. Kim, J. Kim, W. Seo, Y. Cho, and S. Ryu. “Providing Cost-

effective On-Chip Network Bandwidth in GPGPUs”, in ICCD,

2012.

[7] N.Goswami, R. Shankar, M. Joshi, and T. Li. “Exploring

GPGPU Workload: Characterization Methodology, Analysis

and Microarchitecture Evaluation Implications.”, in IISWC,

2010.

[8] W. Dally and B. Towles. “Principles and Practices of

Interconnection Networks”, in Morgan Kaufmann Publishers

Inc., 2003.

[9] A. Kavyan, J. L. Abellan, Y. Ma, A. Joshi, and D. Kaeli.

“Asymmetric NoC Architectures for GPU Systems”, in NoCs,

2015

[10] H. Zhao, O. Jang, W. Ding, Y. Zhang, M. T. Kandemir, and M.

J. Irwin. “A hybrid NoC design for cache coherence

optimization for chip multiprocessors”, in DAC, 2012.

[11] H. Zhao, X. Cheng, S. P. Mohanty, and J. Fang, “Designing

Scalable Hybrid Wireless NoC for GPGPUs”, in Proceedings

of the 17th IEEE Computer Society Annual Symposium on

VLSI, 2018, pp. 703--708.

[12] H. Jang, J. Kim, P. Gratz, K. Yum, and E. Kim, “Bandwidth-

Efficient On-Chip Interconnection Designs for GPGPUs”, in

DAC, 2015.

[13] X. Cheng, Y. Zhao, H. Zhao and Y. Xie, “Packet Pump:

Overcoming Network Bottleneck in On-Chip Interconnects for

GPGPUs”, In DAC, 2018.

0
0.2
0.4
0.6
0.8

1

LP
S

M
U

M N
N

W
P

P
R SP B
P

B
FS

H
W P
F

SR SC

A
V

G
Baseline Stop Req Net CKBD

0

0.5

1

1.5
Baseline Stop Req Net

0

0.5

1

1.5
Baseline Stop Req Net

