


Abstract—Convolutional Neural Networks (CNNs) have

shown a great potential in different application domains

including object detection, image classification, natural

language processing, and speech recognition. Since the

depth of the neural network architectures keep growing and

the requirement of the large-scale dataset, to design a high-

performance computing hardware for training CNNs is

very necessary. In this paper, we measure the performance

of different configuration on GPU platform and learning

the patterns through training two CNNs architectures,

LeNet and MiniNet, both perform the image classification.

Observe the results of measurements, we indicate the

correlation between L1D cache and the performance of

GPUs during the training process. Also, we demonstrate

that L2D cache slightly influences the performance. The

network traffic intensity with both CNN models shows that

each layer has distinct patterns of traffic intensity.

I. INTRODUCTION

Deep Learning techniques became more and more popular,

because it has shown a great deal of success in serval domains

including object detection, image classification, nature

language processing, and speech recognition [1]. However, the

fundamental ideas have stated about three-decade ago [2]. The

current success of deep learning benefited from two main

reasons: 1) the development of the Internet, which produces

massive number of data; 2) the computation capability of

hardware grows rapidly, which can deal large-scale training

data efficiently.

Deep learning is one class of machine learning algorithms,

which can train a non-linear function model by multiple layers

of neurons. In this paper, we only consider a special class of

deep learning architectures, called Convolutional Neural

Networks (CNNs). CNNs is good at object detection, image

classification, natural language processing, and speech

recognition.

 CNN architectures are composed of several layers and each

layer takes three-dimensional data as input then implements a

three-dimensional filter or weight to produce a three-

dimensional result which will be the input for the next layer.

The first layer corresponds to input data and the output of the

last layer corresponds to the predicted output. These filter or

weight for each layer can be updated by backpropagation

through the learning process. Through the forward pass with

current weight, the predicted result can be produced, then

compare to the label and gain the gradient of prediction error.

Through the backpropagation, the gradient of prediction error

passed backwards to the network. By using these gradients, the

weight of each layer can be updated [2].

 Training speed of CNNs highly depends on the computation

capability of hardware and the size of the dataset. Since the

most computations of CNN training are involve matrix dot

products and vector dot product at each layer. Good news is,

these computations exhibit data parallelism. A GPU-based

manycore platform is more suitable for these tasks, and it can

significantly accelerate the training speed [3]. So, it’s the most

preferred choice to implement different types of deep neural

network architectures. TensorFlow and Caffe are two popular

frameworks for deep learning and they both implemented in

GPU-based systems [4][5].

The remainder of the paper is organized as follows. In

Section 2, we provide an overview of the CNNs and the details

of a training process. Also, we present the dataset we use and

the architectures we choose. In Section 3, we discuss the results

of the experiment to demonstrate the correlation between each

factor and performance. Finally, Section 4 concludes the paper

by summarizing the results and pointing out the directions of

the future work.

II. CONVOLUTIONAL NEURAL NETWORKS

In this section, the fundamental ideas of CNNs and the

mathematic theory will be stated

A. Overview of CNNs

A typical CNN architecture is composed of serval different

layers which including convolutional layers, pooling layers, and

fully connected layers. Convolutional layer: The objective of a

Convolutional layer is to extract features of the input volume.

Which means transform a low-level representation into a high-

level representation. Also, we only connect part of the image to

the next layer because if all the pixels of the input are

connected, it will be too expensive. During the forward pass,

apply dot products between a receptive field and a filter and

produces a feature map. Then we slide the filter overall

receptive field with the same filter and generate a set of feature

Li Zhang1, Xianwei Cheng1, Hui Zhao1, Saraju P. Mohanty1, Juan Fang2
1Computer Science and Engineering Department, University of North Texas

{lizhang2,xianweicheng}@my.unt.edu, {hui.zhao,saraju.mohanty}@unt.edu
2Faculty of Information Technology, Beijing University of Technology

fangjuan@bjut.edu.cn

Exploration of System Configuration in

Effective Training of CNNs on GPGPUs

Figure 1. Overview of the CNN architecture for digit classification

[6].

Table 1. Layer configurations for LeNet

Layer Input Filter Output

Conv1 28*28*1 5*5*6 24*24*6

Pool1 24*24*6 2*2*1 12*12*6

Conv2 12*12*6 5*5*6*16 8*8*16

Pool2 8*8*16 2*2*1 4*4*16

Conv3 4*4*16 4*4*16*120 120

Fully1 120 120*86 86

Fully2 86 86*10 10

map. After that, an element-wise non-linear activation function

will be applied to the set of feature map and because of input of

the next layer.

Pooling layer: Normally, there’s two types of pooling layer

base on the operation it uses. Max operation generates max

value from the receptive field and average operation generates

average value from the receptive field. Pooling layer performs

a function to reduce the spatial dimensions of the input, and the

the computational complexity of the model. Also, it can avoid

the overfitting.

Fully connected layer: Fully connected layers always at the

end of the network, since the input already though the

convolutional layers and pooling layers, the volume of neuron

has significantly reduced. So, this layer can connect every

neuron in one layer to every neuron in another layer. The last

fully-connected layer classifying the generated features of the

input image into various classes based on the training dataset.

B. Dataset and Architectures

In the work, we consider one of the most widely used image

classification dataset, namely MNIST [7]. The MNIST database

of handwritten digits, has a training set of 60,000 examples, and

a test set of 10,000 examples. It is a subset of a larger set

available from NIST. The digits have been size-normalized and

centered in a fixed-size image.

We used two architecture, namely LeNet and MiniNet, and

trained with MINST dataset.

LetNet: exclude the input layer and output layer, LetNet has

seven layers, which are three convolutional layers and two max

pooling layers and two fully connected layers. The

configuration for each layer shows in Table 1 [8].

MiniNet: exclude the input layer and output layer, the

architecture only has three layers, so we call it MiniNet. These

three layers are convolutional layers, max pooling layers and

fully connected layers and the configurations of each layer can

Table 2. Layer configurations for MiniNet

Layer Input Filter Output

Conv1 28*28*1 5*5*6 24*24*6

Pool1 24*24*6 4*4*1 6*6*6

Fully1 6*6*6 6*6*6*10 10

be found in Table 2. Both neural networks are trained by

MNIST dataset. The LeNet is more complex than the MiniNet.

LeNet has three convolutional layers and has total 238 filters,

MiniNet only has one convolutional layer and has 17 filters.

C. Training Procedures

Training a CNN in another word, is training the weights of

each layer of CNN. Like we mentioned above, to update the

weights, the backpropagation algorithm is used. Before that, we

need to get the prediction error from pass forward with current

weights.

Perform a pass forward on the convolutional layer as

follows:

𝑎(𝑙) = 𝜎(𝑧(𝑙)) = 𝜎(𝑎(𝑙−1) ∗ 𝑊(𝑙) + 𝑏(𝑙)) (1)

Which 𝑎(𝑙) is an output of layer 𝑙 , 𝜎 is activation function,

𝑊(𝑙), 𝑏(𝑙) is weight and bias of layer 𝑙. ∗ indict the convolution

operator.

 Perform a backpropagation on the convolutional layer as

follows:

𝛿(𝑙) = ((𝑊(𝑙))
𝑇

𝛿(𝑙+1)) ∙ 𝜎′(𝑧(𝑙)) (2)

∇𝑊(𝑙) = 𝛿(𝑙+1)(𝑎(𝑙))
𝑇
 (3)

∇𝑏(𝑙) = 𝛿(𝑙+1) (4)

Which δ(l) is error for an l -th layer. ∇W(l) and ∇b(l) are

gradients for the l-th layer.
 Base on the equation (1), (2), (3), (4), obviously, the pass

forward and backpropagation require lots of matrix

computations and a lot of data parallelism exist.

 For both pass forward and backpropagation, convolutional

layers contain the most expensive operations. Each convolution

operation requires multiple dot products of the receptive field

and filter values.

III. EXPERIMENTAL RESULTS AND ANALYSIS

To do this experiment, we used GPGPU-sim, a well-known

detailed, cycle-level simulator modeling contemporary

graphics processing units (GPUs) running GPU computing

workloads written in CUDA or OpenCL [9] [10][11]. We

customize the configuration of GPGPU to exam the correlations

between different factors. Table.3 shows the details of the

configurations.

Form the Fig.2 to Fig.9. left part of the figures presents the

forwarding pass, and right part of the figures presents the

backpropagation. And the bar of “c” presents the IPC number

Table 3.System configuration

Configuration L1D L2D Network

Baseline 32 64 Butterfly

Perfect 32 64 Perfect

L1D_32_L2D_32 32 32 Butterfly

L1D_64_L2D_32 64 32 Butterfly

L1D_64_L2D_64 64 64 Butterfly

Figure 2. IPC for training the LeNet with Mesh Network and Perfect

Network.

Figure 3. IPC for training the MiniNet with Mesh Network and

Perfect Network.

of convolutional layer, “p” means pooling layer and “f” means

fully connected layer.

A. Mesh Network vs Perfect Network

According to the Fig.2 and Fig.3, we see the performance of

the Perfect Network is better than Mesh Network during the

convolutional layers, however, the Mesh Network perform

better than Perfect Network when computing the fully

connected layers. Also, we can see, when the computation size

increase, the performance of Perfect Network gives

significantly raise. Since the Perfect Network doesn't have any

delay during on-chip data transmission, so the result indicates

the convolutional layers request lots of data transmission, and

fully connected layer request less data transmission.

B. L1 Cache Configuration

According to Fig.4 we can see, when the L1D cache increase,

the performance in the backpropagate stage is better.

Especially, the performance of max pooling layer 1 (denote as

Figure 4. IPC for training the LeNet with different L1D cache

Configuration.

Figure 5. IPC for training the MiniNet with different L1D cache

Configuration.

p1) raised significantly. Also, Fig.5 shows the same result as

the Fig. 4 except the change rate is smaller than Fig.5. So, we

think the L1D cache influence the performance of CNN. Which

increase the L1D cache will raise the performance of both CNN

architectures, especially, when the size of CNN architecture is

large.

C. L2 Cache Configuration

To test that how L2 cache impacts the performance of both

CNN architectures, we set up the different L2D cache. Fig.6

shows the performance of convolutional layer 1 (denote as c1)

raised and convolutional layer 2 (denote as c2), max pooling

layer 1 and 2 (denote as p1, p2) dropped， but the changes are

very slight. In Fig.7, the performance of each layer in MiniNet

is exactly the same. According to these experimental data, we

can conclude since we double the L2D cache for both small and

large CNN architectures, the performances almost remained the

same, there is no correlation between IPC and L2D cache.

D. Analysis of Inject Rate

We compare the network traffic intensity (measured in

normalized flits injection rate) with different CNN layers in

Fig.8 and Fig.9. Both in forward pass and backpropagation, the

figures show, that convolutional layers (denoted as c) have

Figure 6. IPC for training the LeNet with different L2D cache

configuration.

Figure 7. IPC for training the MiniNet with different L2D

cache configuration.

highest injection rates. In Fig.8, the fully connected layer 1

(denoted as f1) has higher injection than the max pooling layer

2 (denoted as p2) during both forward pass and

backpropagation. For the average, fully connected layers have

the lowest injection rate, max pooling layers have higher

injection rates than fully connected layers but lower than

convolutional layers.

IV. CONCLUSION AND FUTURE WORK

The results of the experiment demonstrate the correlation

between some factors and performance, they also indicate some

factor which will not impact the performance of the GPU during

the training process.

The results of the comparison between the perfect network

and mesh network, concludes on-chip latency highly affects the

performance since the data transmission is very active during

the training process. We also indicate that L1D cache can

impact the performance, since the IPC increase along with the

L1D cache increase. L2D cache slightly influences the

performance, especially the volume of computation is low,

increase the L2D cache shows the same results as the regular

L2D cache configuration. The network traffic intensity with

both CNN models demonstrate that each layer of any CNN

involves distinct computation patterns, the volume of the traffic

varies from one layer to another. These unique patterns show

the convolutional layer has the highest traffic intensity, and the

fully connected layer has lowest traffic intensity.

Figure 8. Normalized injection rate of LeNet.

Figure 9. Normalized injection rage of MiniNet.

V. REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. Nature 521: 436–

444. 2015. J. Clerk Maxwell, A Treatise on Electricity and Magnetism,

3rd ed., vol. 2. Oxford: Clarendon, 1892, pp. 68-73.
[2] M.Abadi, et al, “TensorFlow: Large-scale machine learning on

heterogeneous systems”. Software available from tensorflow.org, 2015.

[3] Y. A. LeCun, L. D. Jackel, L. Bottou, A. Brunot, C. Cortes, J. S. Denker,
H. Drucker, I. Guyon, U. A. Müller (Muller), E. Säckinger (Sackinger),

P. Y. Simard, V. N. Vapnik, "Learning algorithms for classification: A

comparison on handwritten digit recognition", Neural Networks, pp. 261-
276, 1995.

[4] Y. LeCun, C. Cortes, “The MNIST database of handwritten digits”,

http://yann.lecun.com/exdb/mnist/
[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning

applied to document recognition”. Proc. of the IEEE, november 1998.

[6] Ali Bakhoda, George Yuan, Wilson W. L. Fung, Henry Wong, Tor M.
Aamodt,“Analyzing CUDA Workloads Using a Detailed GPU Simulator”

, in IEEE InternationalSymposium on Performance Analysis of Systems

and Software (ISPASS), Boston, MA, April 19-21, 2009.
[7] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani,

Nam Sung Kim, Tor M. Aamodt, Vijay Janapa Reddi,“GPUWattch:

Enabling Energy Optimizations in GPGPUs”, In proceedings of the
ACM/IEEE International Symposium on Computer Architecture (ISCA

2013), Tel-Aviv, Israel, June 23-27, 2013.

[8] Aaron Ariel, Wilson W. L. Fung, Andrew Turner, Tor M. Aamodt,
“Visualizing Complex Dynamics in Many-Core Accelerator

Architectures”, In Proceedings of the IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), pp. 164-174,
White Plains, NY, March 28-30, 2010.

