
An IoT-Enabled Modular Quadrotor Architecture
for Real-Time Aerial Object Tracking

Gavin Coelho Elias Kougianos Saraju P. Mohanty
Peterbilt Motors Company Engineering Technology Computer Science and Engineering

Denton, Texas, USA. University of North Texas, USA. University of North Texas, USA.
Email: Gavin.Coelho@paccar.com Email: elias.kougianos@unt.edu Email: saraju.mohanty@unt.edu

Prabha Sundaravadivel Umar Albalawi
Computer Science and Engineering Computer Science and Engineering
University of North Texas, USA. University of North Texas, USA.

Email: prabhasundaravadivel@my.unt.edu Email: UmarAlbalawi@my.unt.edu

Abstract—This paper presents a modular and extensible
quadrotor architecture and its specific prototyping for automatic
tracking applications. The architecture is extensible and based
on off-the-shelf components for easy system integration while
maintaining constant connectivity with the IoT. A target tracking
and acquisition application is presented in detail to demonstrate
the power and flexibility of the proposed design. Complete design
details of the platform are also presented. The designed module
implements basic PID control and a custom target acquisition
algorithm. Details of the sliding-window based algorithm are also
presented. This algorithm performs 20× faster than comparable
approaches in OpenCV with equal accuracy. Additional modules
can be integrated for more complex applications, such as search-
and-rescue, automatic object tracking, and traffic congestion
analysis.

Index Terms—Object Detection, Robots, Robot Vision Systems,
Global Positioning System, Internet of Things

I. INTRODUCTION AND CONTRIBUTIONS

The ubiquitous quadrotor is commonly used with an on-
board camera and one/two operators who control both the
flight of the vehicle and the camera operation. In industry
this provides a quick, easy and relatively low-cost means
for inspection of pipelines, bridges and large structures and
navigating areas that are remote and otherwise hard to access.
Civil applications include search and rescue, traffic congestion
analysis, fire monitoring, HAZMAT operations and the inspec-
tion of dangerous sites as well as environmental assessments
and nature conservation. In law enforcement they are useful
for surveillance, documenting crime scenes and gathering
intelligence. They can also be used for aerial photography,
television and videography, real estate and property assess-
ment. By enabling autonomous control with object recognition
and video tracking many of these tasks can be automated
allowing for more vehicles to be deployed with considerably
fewer operators. For example, during a search and rescue
mission, multiple quadrotors could be programmed to search a
given area sending an alert to the search team when a possible
subject is found. If they are equipped with an infrared thermal
imaging camera this would allow them to search through the

night. Similarly, for law enforcement and surveillance a subject
could be tracked by multiple quadrotors, all communicating
with the base station or each other, forming a subnet of the
Internet-of-Things (IoT), as shown in Fig. 1. The control
algorithm can then analyze information from not just one
vehicle but the whole swarm and the IoT itself allowing it
to make more complex calculated decisions.

Fig. 1. The IoT-enabled aerial platform.

The novel contributions of this paper are the following [1]:
• A functional low-priced quadrotor was built based on

modification of existing proprietary and open-source plat-
forms.

• A medium resolution (640 × 480) optical camera system
was designed and attached to the quadrotor

• A ground control station was designed and built. It
provides for autonomous wireless control of the quadrotor
without affecting the vehicle’s payload. PID control was
also implemented on-board.

• Wireless video transmission was achieved between the
quadrotor and the ground station using commonly avail-
able off-the-shelf components.

• The OpenCV computer vision software platform was
modified to accomplish all video related tasks, including
pattern recognition.

• A library of serial communication functions was custom
developed for this project to allow the control of the
quadrotor from the ground station if autonomous flight
fails.

• An existing algorithm presented in the literature was

modified to operate satisfactorily on the limited hardware
of the ground station. An average speedup of 20 × was
achieved.

The rest of this paper is organized as follows: in Section II
we briefly discuss the relevant flight dynamics and control
systems of quadrotors in general. Section III presents the
hardware considerations taken into account for this design.
Section IV describes the hardware setup and communication
protocol followed in this design. Section V presents the object
detection and video processing algorithms used. Section VI
concludes the paper and briefly discusses areas of future
development of this platform.

II. QUADROTOR SYTEM-LEVEL DESCRIPTION

In this Section a description of the quadrotor system is
presented with brief discussion of each component.

A. UAV

The unmanned aerial vehicle (UAV) is a powered, aerial
vehicle that is either remotely piloted or controlled au-
tonomously. A remotely piloted UAV is known as a drone.
Drones have been around since the early 20th century. How-
ever, in recent years many unmanned UAVs have been de-
veloped with autonomous control allowing them to carry out
preprogrammed flight plans. They are most commonly used
for military applications including reconnaissance and attack
missions [2]. Furthermore, they are increasingly being used for
other non-military tasks including fire fighting, surveillance,
and inspection.

B. Control System

The quadrotor is a dynamically unstable nonlinear system.
This makes the quadrotor difficult to fly without an embedded
control system [3], [4]. This is highly essential for autonomous
flights. A close-loop feedback control system is implemented
in the quadrotor to achieve stable flight. In the case of a
quadrotor, the process is the vehicles dynamics and the output
Y (s) is the current position and orientation. The various
sensors measure this information in real-time and compare it to
the desired value. The difference of the desired input value and
actual output is the tracking error ε. The controller processes
this error and the output is the new speed for each individual
motor. The change in motor speed results in a change in the
system output, which in turn is compared to the desired input
and the cycle continues to repeat this process. Many studies
have been conducted to test the response of various feedback
controllers. These include Dynamic Contraction Method [5]
and Linear-Quadratic Regulator (LQR) [6].

III. HARDWARE COMPONENTS OF QUADROTOR
ARCHITECTURE

Many different quadrotor platforms have been developed
for both research and commercial applications. Most tend
to be relatively costly ranging from $,2000 - $,7000. The
ArduCopter [7] (succeeded by the APMCopter [8]) is an open
source quadrotor UAV project with a large active community

and low cost components. The controller is based on the popu-
lar Arduino platform and is undergoing constant development.
This makes it a good platform for further development. The
total cost of the hardware was $1,276 which is very reasonable
for its intended applications. The hardware will be discussed
in three different sections: the ArduCopter (which consists of
the frame, the drive system, the controller or autopilot and the
sensors), the radio controller and the ground control station
(that includes the wireless telemetry, video capture system and
computer).

A. ArduCopter

Frame. The frame was purchased as a kit that contained the
main plates, arms, motor mounts, battery mount, the carrier
boards and the landing gear (Fig. 2).

Fig. 2. Assembled quadrotor.

Drive system. The drive system consists of four elec-
tronic speed controllers (ESC) that drive the brushless DC
motors. The system is powered by a battery pack via a
power distribution board and the ESCs receive a Pulse-Width
Modulated (PWM) control signal from the ArduPilot Mega
(APM) controller, as shown in Fig. 3. The APM consists of
an Arduino Mega microcontroller and associated firmware.

Power Signals

LiPo Battery

11.1V

Power

Distribution

Board

APM

(ArduPilot Mega)

ESC

ESC

ESC

ESC

PWM Control Signals

Brushless DC Motor

Brushless DC Motor

Brushless DC Motor

Brushless DC Motor

Fig. 3. Drive system block diagram.

Brushless DC motors. Brushless DC motors are used over
brushed motors as they have a higher efficiency, experience
less wear, produce less noise, allow for more accurate speed
control and offer a better thrust to weight ratio. However
they are more expensive and require more complex and
costly control electronics. The current and torque relationship
is linear as well as the frequency and speed relationship.
Brushless DC motors are rated by their Km (motor constant)
and Kv (motor velocity constant) values. The Kv rating of a
motor is the ratio of the unloaded Rotations Per Minute (RPM)
to peak voltage. Depending on the motor configuration they
are normally referred to as either “outrunners” or “inrunners”.
The conventional configuration is the “inrunner” and consists

of three stator windings surrounding the rotor which contains
the permanent magnets. An “outrunner” consists of the stator
coils in the center with the permanent magnets attached to
the rotor which rotates around the outside. The motors used
have a Kv value of 850. Thus with an 11.1 V supply they are
capable of reaching a maximum of 9435 RPM. They weigh
62 g each and can produce a maximum torque of 1095 g.

Electronic speed controller. The motors are driven by
a programmable electronic speed controller (ESC) which
receives a 50 Hz PWM control signal from the APM and
switches a network of field effect transistors (FETs). The
position of the motor is determined by measuring the back
EMF, which allows for the controller to energize the correct
coil causing the motor to rotate.

LiPo batteries. Two 11.1V lithium polymer (LiPo) 3-
cell batteries were purchased, each with a capacity of 3000
mAh and weight of 269 g. This allows for a flight time of
approximately 10-20 minutes.

Rotors. A set of four 10-inch rotors consisting of two
pushers and two pullers, was used. The pushers are used on
the clockwise rotating motors (N and S) while the pullers are
used on the counter-clockwise rotating motors (W and E). It
is important to ensure that the rotors are balanced so as not to
introduce vibrations into the system, as this will induce errors
in the sensor readings.

Controller (APM). The controller is responsible for the
stabilization of the vehicle by continually processing the data
from the sensors and adjusting the speed of the rotors accord-
ingly. The ArduPilot Mega (APM) is a controller board based
on a 16 MHz ATMega1280 microcontroller and is responsible
for the stabilization and navigation. A PID feedback control
loop is implemented in the controller in order to stabilize the
vehicle.

Sensors. Various sensors are used to determine the current
position, orientation and velocity of the vehicle. The majority
of these sensors are located on the Inertial Measurement Unit
(IMU), while others are mounted on the frame and connected
to either the IMU or the APM. A separate board (ArduPilot
Mega IMU Shield) is required to interface the sensors with
the main controller. This board attaches to the APM and
has an onboard gyroscope and three-axis accelerometer. It
also allows for a magnetometer and various other sensors
to be connected. A GPS module attaches directly to the
controller and communicates via a USB/UART interface. It is
a MediaTek MT3329 and allows for positioning of the vehicle
within 3 m of the desired location. In order to hold the same
position it is important to continuously know the direction
the vehicle is facing, as the controller needs to continuously
calculate the corrections that need to be made to account
for the drift in the yaw gyroscope. GPS can only calculate
a directional vector when the vehicle is in motion thus a
magnetometer is required to determine the direction whilst
hovering in a single position. The magnetometer used is based
on Honeywell’s HMC5843 and communicates through an I2C
interface. It was soldered onto the IMU, leaving the I2C port
free to be used for other peripherals if required.

Video camera and transmitter. The onboard video sys-
tem consists of a 1/2 inch CCD NTSC Sony camera with a
resolution of 510 × 492 and a 2.4 GHz four-channel video
transmitter used to transmit the video back to the ground
station. The transmitter has two connectors, a 2-pin power
input connector that was soldered to the power distribution
board, and a 5-pin video in connector.

B. Radio Controller

It is important to have a manual control that can override
the control signals sent by the computer at all times, hence a
standard 6 channel RF Radio Control (RC) unit and receiver
is used. For each channel the RC transmits a PWM signal
that is decoded by the ArduCopter. The controller consists
of two control sticks each with two degrees of freedom that
make up the first four channels. These channels provide the
basic flight controls, namely throttle, yaw, pitch and roll by
sending a varying PWM signal that ranges from 1000 to 2000
microseconds. The remaining two channels are toggle switches
that only have two states, low and high, represented by a
PWM value of 1000 or 2000 microseconds respectively. These
toggle switches can be used to set custom control modes for
the ArduCopter. In this design, channel 5 is used to toggle
between a manual stabilized control mode and the altitude
hold mode and channel 6 is left unused. The layout of the first
four channels is described by 4 different modes, with Mode 1
and Mode 2 being the most common. Mode 1 is more popular
in the United Kingdom and has the throttle and yaw on the
right hand side stick. Mode 2 is used in this design. It is the
favored mode in the United States and has the throttle and yaw
on the left hand stick. The PWM range will differ between RC
controllers, thus the ArduCopter needs to be calibrated. This
can either be done by setting the values manually with the
command line interface or by using the Mission Planner GUI
based calibration [9].

C. Ground Control Station

The ground control station (GCS, Fig. 4) handles all the
video processing and consists of a laptop computer, wireless
video receiver, USB video capture device and a USB XBee
wireless module for telemetry. Telemetry is the transmission
of the sensor data and commands between the ArduCopter and
the GCS. The sensor data includes current position data from
the GPS, altitude, velocity, orientation and RC PWM values.
The ground station is connected to the XBee module via an
XBee Explorer which allows for the serial commands to be
sent and received over USB.

Wireless video receiver. The video receiver requires a 12
V power supply. Therefore, a 2.1 mm power jack was placed
on the right hand side of the GCS. This allows for the receiver
to be powered with a wall wart or a 12 V battery may be used.

USB capture device. A capture device is required to convert
the analog video output from the wireless video receiver to a
digital format that can be used by the software. These capture
devices are available as either internal capture cards or external
devices that are commonly connected via USB or FireWire.

Fig. 4. Ground control station.

An Elgato 10020840 external USB 2.0 device was chosen, as
it can be used with either a desktop or portable computer and
USB connections are more common than FireWire. It supports
a video resolution of 640 × 480 and uses either the H.264
codec at 1.4 Mb/s or the MPEG-4 codec at 2.4 Mb/s.

Xbee XBees are small, low-powered radios well suited to
low bandwidth RF applications. They implement a simple
serial command set making them ideal to wirelessly interface
a microcontroller and personal computer. The two XBee
modules considered were the XBP09 and the XBP24, which
operate at 900 MHz and 2.4 GHz, respectively. The XBP09 is
capable of point-to-point, peer-to-peer and point-to-multipoint
networking and has a range of up to 10 km and a data rate
of 156 Kb/s. The XBP24 modules are based on the IEEE
802.15.4 standard (the basis for ZigBee) and have a higher data
rate of 250 Kb/s but a reduced range of 1.6 km. The XB09
module was selected due to its greater range and operating
frequency of 900 MHz, which would not cause interference
with the 2.4 GHz RC. In order to interface the XBee module
with the APM an XtreamBee board is used in the current
design.

Computer. A command line program is executed on a
laptop running Mac OS 10.6.8 with OpenCV 2.3.1 installed.
Two USB connections are required for the XBee and video
capture device.

IV. WIRELESS COMMUNICATION IN QUADROTOR

Video processing requires a substantial amount of process-
ing power and is beyond the capability of the AVR microcon-
troller used to control the APM. To perform the processing
onboard the quadrotor a microcomputer (BeagleBone, Rasp-
berry Pi or similar board) capable of running OpenCV would
be required. This would add weight and require significantly
more power thus reducing the battery life and flight time
considerably. Instead, a ground control station (GCS) is used to
do all the heavy processing. This is accomplished by sending
the video to the GCS via a wireless transmitter. The GCS
processes the video and determines the actions to be taken,
sending back control commands to the ArduCopter. As seen
in Fig. 5, the video link is a one-way downlink while the
control link is bidirectional, allowing for the GCS to send and
receive data from the ArduCopter. It is important for these
links to operate at different frequencies so as not to cause any

interference. The RC operates at 2.4 GHz, thus a 5.4 GHz
video transmitter was selected. The data link consists of two
XBee modules.

Ground

Communications

Xbee

USB

Adapter

RF

Receiver

USB

Video

Adapter

Controller

Xbee

Quadcopter

RF

Transmitter

Fig. 5. Wireless communication setup.

The ArduCopter uses MAVLink [10], a two-way com-
munication protocol based on the W-CAN and SAE AS-4
standard that was developed specifically for micro air vehicles.
MAVLink consists of a header library that has implemented
various commonly used messages that allow for settings to be
updated, sensor readings to be read, modes to be changed and
control commands to be sent. If custom messages are required
they may be generated in either C or Python. A message
packet varies in length and can be between 8 and 263 bytes.
Every packet consists of at least 8 bytes and the message type
determines the length of the payload which can be between 0
- 255 bytes. The first byte is the packet start sign (0x55) and is
followed by the payload length (0-255). The third byte is the
packet sequence and represents the number of messages that
have been generated during the current session. This number is
automatically incremented when each new message is packed.
The next two bytes are the system ID and the Component ID.
This allows for multiple systems to communicate with multiple
vehicles as a message can be addressed to a specific one. The
sixth byte is the Message ID that determines the function of
the message. There are a number of commonly used messages
as well as some that are specific to the ArduCopter. The
payload can vary in length from 0 - 255 bytes depending on
the message and it carries the information either being sent
to or received from the ArduCopter. The payload can contain
8/16/32/64 bit signed or unsigned integers, floats, doubles or
char values. Finally the last two bytes consist of a 16 bit
checksum generated by the same means as that used in the
ITU X.25 and SAE AS-4 standards.

The main message used in the program is the RC Channel
Override message, which allows for the program to set the
PWM values for each channel overriding the RC values for
one or multiple channels. The message payload consists of 18
bytes. The first two bytes are the target system and component
ID, which are both set to one. The remainder of the payload
consists of eight 16 bit unsigned integers representing the
PWM value for each channel. To override the channel this
value should be between the minimum and maximum PWM

values for that channel, normally between 1000 and 2000. To
release control of a channel back to the ArduCopter a value
of 0 is set and to leave the current value for the channel
unchanged a value of -1 (0xFFFF) is set. Each message
has a corresponding pack function that takes the required
values and generates the message. MAVLink has already been
implemented on the ArduCopter and thus, only needed to be
incorporated in the ground control station program. On the
GCS the message is packaged with the required MAVLink
pack method and then sent out over the serial port. The
ArduCopter then receives the message and checks the data
integrity by comparing the checksum. If there is no data lost
then the message is unpacked and the data is passed to the
required function determined by the message ID. A number of
helper functions were created to pack and send messages out
over the serial port. To arm the motors, after the ArduCopter
has booted up, the left control stick is held in the bottom
right position for a few seconds. This corresponds to a throttle
value of 0% and a yaw right value of 100%. A function
was created to arm the motors by sending a message with
the corresponding PWM values for channels three and four,
waiting 4 seconds and then handing control back to the RC.

V. OBJECT DETECTION AND VIDEO PROCESSING IN
QUADOTOR

Object tracking is performed using a vision system. It
consists of three steps as follows: (1) the detection of the
desired object, (2) the tracking of the object between frames
and (3) the analysis of the changes in object position to
determine the behavior of the object.

A. Template Matching

Template matching is one of the most common tech-
niques used for object detection and has been implemented
in OpenCV as the matchTemplate function. In order
to perform the match, a template image is used to identify
an object in a source image by comparing the pixel values
of the target with those in a portion of the source image. A
result image is created with each pixel value representing the
confidence of the match at the corresponding location. There
are six different comparison methods available in OpenCV
[11]. The template image T with pixel width Tw and pixel
height Th is initially overlaid on the source image S with
pixel width Sw and pixel height Sh, starting in the upper left
corner as shown in Fig. 6.

X X

X

X

Template

Source

Sw

Sh X

Mx

My

Fig. 6. Sliding window method used for template matching.

A comparison of the pixels is performed and the result R
is the confidence of the match at this location. The template

image is moved 1 pixel to the right (x = x+ 1) and another
comparison is performed. When the right edge of the template
image reaches the right edge of source (x = Sw − Tw) the
template image is then moved down 1 pixel (y = y + 1, x =
1) and the process is repeated until the template reaches the
bottom right corner (x = SwTw, y = Sh − Th). The result
image will have a width of Rw = SwTw and a height of
Rh = ShTh. The location in the result image with either the
highest or lowest value, depending on the method used, has the
highest match probability. This point is relative to the result
image and thus needs to be converted to a point relative to the
source image, using the following equations:

Mx = Rx + Sx − Tw

2
(1)

My = Ry + Sy −
Th

2
, (2)

where (Mx,My) are the coordinate locations of the match
with respect to the source and (Rx, Ry) are the coordinate
locations of the match with respect to the result image. One
of the disadvantages of this method is that it can be slow if
the source image is relatively large or the template image is
much smaller than the source. In this case the source image
from the video feed is 640 × 480 pixels. Assuming a template
image of 100 × 100 pixels then 205,200 comparisons of the
template image would be performed as seen below:

No. of comparisons = (640−100)× (480−100) = 205, 200.
(3)

Another disadvantage is that the target in the template image
needs to be the same size as the target in the source image.
This is a problem as the size of the target in the source image
is dependent on the distance between the quadrotor and the
target. There are two possible ways to overcome this, the first
is to get an altitude reading from the ArduCopter and scale
the target image accordingly to match the expected size of
the target in the source. This would require that the size of
the target is known and that an accurate measurement of the
distance to the target can be obtained. The other method would
be to attempt a match and if one is not found then scale the
target and repeat until a match is found. However this would
be significantly more computationally expensive and would
result in a much lower frame rate. To perform a template
match in OpenCV the template image is loaded as a gray-
scale image and stored in a native data structure. The video
stream is opened using the desired camera source and then a
single frame is grabbed and stored as the source image. The
image that is captured form the camera is an 8-bit image and
has three channels, red, green and blue. The color channels are
not needed, as the target image is black and white, the image
is converted to gray scale thus using just one channel. This
greatly reduces the size of the matrix (by a factor of almost
3) and results in a significant speed increase.

B. Fast Template Matching

One method of improving the time taken to perform the
template matching is to equally scale down the source and

template images. By doing this the number of comparisons
performed can be reduced greatly. For example, if a source
image of 640 × 480 pixels and a template image of 100 ×
100 pixels are scaled downby a factor of 4 then the number
of comparisons performed will be reduced from 205,200 to
12,825 This results in a significantly large computational
saving as now 93.25% fewer comparisons are performed,
however the accuracy of the location of the match will be less
accurate. The confidence of the match will also be affected,
as information is lost when the image is down-sampled. An
OpenCV function [11] uses this method to down-sample the
source and template images and find multiple match locations.
The original source image is then searched around these match
locations by creating a Region of Interest (RoI) that is centered
on the match location with a size that is slightly larger than
the template image. This allows for the match location to be
determined without a great cost in computation or resolution.
The final algorithm used to perform the template matching was
based on the FastMatchTemplate with image pyramid
[12]. The original function was updated to use the new C++
data structures, which do not require memory management. All
unneeded code was removed, as only one match location was
required, thus simplifying the function. For this application the
goal is to detect an object while flying above it and at high
altitudes; it is therefore likely that the target is only going to
move by a small number of pixels between each pass through
the loop. An option was thus added to skip the down sampling
step if there was a match previously and instead just search
around the location of the previous match. This can produce
a small improvement in the time taken to find a match for
a slow moving target. This method will also filter out any
large changes in the match location that could be due to false
positives or other targets being detected and will prevent the
quadrotor from making sudden changes or losing track of the
current object. The first thing the algorithm does is to check
that the template image is smaller than the source image and
that the number of channels in each image is equal, otherwise
the function will fail. Next, copies of the source and template
are made so as to not alter the originals. In the case when there
was not a match the last time through the loop, then down
sample the images and try to find a match with confidence
above the desired value. If a match is found then the match
location is set to then new value. When there was a previous
match or there is a new match, then the original source image
is searched over a small user defined RoI. If a valid match is
found in this region then the match location is converted back
to the source image coordinates. Finally, the target location
may be highlighted on the source image and displayed for the
user. This custom developed fast template matching algorithm
achieved an average speedup of 20× over the unoptimized
FastMatchTemplate.

VI. CONCLUSIONS AND FUTURE RESEARCH

A versatile and extensible quadrotor platform, shown in
Fig. 2, based on open-source hardware and software was
designed and is described in detail in this paper. As an example

application of the platform’s capabilities, a target recognition
system was designed, programmed and implemented using
custom and published algorithms with outstanding perfor-
mance. Research work is currently underway to extend the
functionality of the vehicle by incorporating line-of-sight opti-
mal communications location for search and rescue operations.
Further work will concentrate on improving the on-board
computating capabilities so that most of the computational
burden is removed from the base station thus reducing the
large amount of wireless traffic currently incurred. To securely
transfer image and video data, the quodrotor architecture will
be equipped with an on-board secure digital camera (SDC)
[13]. In such a situation, the quodrotor can be deployed to
capture and transmit sensitive information reliably through the
use of its on-board SDC through use of watermarking and
encryption [13], [14]. This is particularly important in certain
applications in which a 3rd party can tamper with the data
transmitted from the quodrotor in an IoT framework.

REFERENCES

[1] G. Coelho, “OTA-Quadrotor: An Object-Tracking Quadrotor for Real-
Time Detection and Recognition,” Master’s thesis, Department of Engi-
neering Technology, University of North Texas, Denton, TX, USA.

[2] M. Tarhan and E. Altuğ, “A Catadioptric and Pan-Tilt-Zoom Camera
Pair Object Tracking System for UAVs,” Journal of Intelligent & Robotic
Systems, vol. 61, no. 1–4, pp. 119–134, January 2011.

[3] R. C. Leishman, J. C. MacDonald, R. W. Beard, and T. W. McLain,
“Quadrotor and Accelerometers: State Estimation with an Improved
Dynamic Model,” IEEE Control Systems, vol. 34, no. 1, pp. 28–41,
January 2014.

[4] R. Mahony, V. Kumar, and P. Corke, “Multirotor Aerial Vehicles:
ModModel, Estimation, and Control of Quadrotor,” IEEE Robotics &
Automation Magazine, vol. 19, no. 3, pp. 20–32, 2012.

[5] R. Czyba, “Design of Attitude Control System for an UAV-type
Quadrotor Based on Dynamic Contraction Method,” in Proceedings
of the IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM), 2009, pp. 644–649.

[6] B. Yu, Y. Zhang, I. Minchala, and Y. Qu, “Fault-tolerant Control With
Linear Quadratic and Model Predictive Control Techniques Against
Actuator Faults in a Quadrotor UAV,” in Proceedings of the Conference
on Control and Fault-Tolerant Systems (SysTol), 2013, pp. 661–666.

[7] “Arducopter - The Full-Featured Multicopter UAV!” http://code.google.
com/p/arducopter/, Last accessed on 27 Sep 2015.

[8] “APMCopter,” http://copter.ardupilot.com/, Last accessed on 27 Sep
2015.

[9] “APM Mission Planner,” http://code.google.com/p/ardupilot-mega/wiki/
MissionPlanner, Last accessed on 27 Sep 2015.

[10] QGROUNDCONTROL, “MAVLink Air Vehicle Communication Proto-
col,” http://qgroundcontrol.org/mavlink/start, Last accessed on 27 Sep
2015.

[11] “The OpenCV Reference Manual,” http://docs.opencv.org/
opencv2refman.pdf, Last accessed on 27 Sep 2015.

[12] OpenCV, “Fast Template Matching with Im-
age Pyramid,” https://opencv-code.com/tutorials/
fast-template-matching-with-image-pyramid/, Last accessed on 27
Sep 2015.

[13] S. P. Mohanty, “A Secure Digital Camera Architecture for Integrated
Real-Time Digital Rights Management,” Journal of Systems Architec-
ture, vol. 55, no. 10-12, pp. 468–480, October 2009.

[14] N. M. Kosaraju, M. Varanasi, and S. P. Mohanty, “A High-Performance
VLSI Architecture For Advanced Encryption Standard (AES) Algo-
rithm,” in Proceedings of the 19th International Conference on VLSI
Design, 2006, pp. 481–484.

