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Abstract—The increasing complexity of modern electronic
devices driven by consumer demand and technological advance-
ments presents significant challenges for designers. The reduced
feature size and increased capabilities lead to more complex
designs as more sub-systems are packed into a single chip.
Traditional synthesis and optimization methods which involve
CAD tools for accurate simulation are computationally time
expensive and even become infeasible especially in designs using
nanoelectronic technology due to increased design factors and the
exponentially increasing design space. The current objective is to
explore techniques that produce optimal designs while reducing
the design effort. Metamodeling techniques have been used in this
respect to reduce the cost of manual iterative circuit sizing during
synthesis. Existing metamodeling techniques however are unable
to capture the effects of process variation which are dominant in
deep nanometer regions. This work explores Kriging techniques
for fast and accurate design optimization of nanoscale analog
circuits.
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I. INTRODUCTION

The design of Analog Mixed-Signal Systems-on-a-Chip
(AMS-SoCs) presents a difficult challenge given the number
of design specifications that must be met. The demand for
smaller and yet more powerful electronic devices along with
the progressive scaling of the technology only aggravates the
problem. The reduced feature sizes and increased capabilities
lead to more complex designs as more sub-circuit systems
are packed into a single chip. The continuous progression
of semiconductor technology in itself further worsens the
design process as designers now need to deal with issues of
subthreshold leakage and power density. A more prominent
issue which arises in designs using nanoelectronic technol-
ogy is the issue of process variation. With more complex
designs, and the increase in the number of design and process
parameters that must be considered to mitigate the issues
of subthreshold leakage and process variation, circuit sizing
synthesis for optimal analog designs presents a major burden
to designers. The use of existing electronic design automation
(EDA) tools for exhaustive design space exploration incurs
expensive computer SPICE simulation time and continues to
grow exponentially. For example the complete silicon aware
(parasitic) simulation of a circuit system like a Phase Locked
Loop (PLL) on a CAD tool could take days or even weeks.

The current objective is to explore techniques that pro-
duce optimal designs comparable to results using CAD tools

while reducing the design effort of designers. Conventional
techniques include the use of metamodels to create a quick
behavioral response of the circuit design which can be used for
design analysis and optimization before completing the final
sizing of the physical design. A metamodel is an abstraction of
the design, approximating the behavior of the circuit response
to the most sensitive design parameters [1]. The aim of
metamodeling designs is to reproduce as accurately as possible
simulation results close to ones produced by CAD tools while
abstracting the time intensive cost efforts of computer simu-
lations, providing the designers a fast, accurate and efficient
way to explore the design space during circuit sizing synthesis
without manually resizing the layout schematics. Common
metamodeling techniques include response-surface modeling,
linear and low-order polynomial regression functions, and
artificial neural networks (ANNs) [2]–[4].

In creating metamodels based on low-order polynomial re-
gression for nanoCMOS designs, the regression models assume
the effects of process variation are purely random and thus ap-
proximate the error equally across the design space. However,
the effects are not random but are strongly correlated. Kriging
prediction techniques take into account the correlation effects
between input parameters and also incorporate a stochastic
component for performance point prediction that produces a
more statistical accurate circuit description. The weighting
system for each point predicted is unique and calculated using
the variogram for characterizing the autocorrelation effects
between the design parameters. This unique weighting property
however can potentially be time consuming for large design
spaces. This work proposes Kriging based metamodel designs
and also combines a Kriging-bootstrapped ANN metamodel
that mitigates the potential time cost of Kriging on large design
spaces. The use of Kriging based metamodels thus provides
a more robust process variation aware design increasing the
yield and reducing design effort. The novel contributions of
this work are the following: (1) A layout-accurate method
for geostatistics-based Kriging metamodel generation, (2) A
novel ultra-fast but accurate layout design optimization flow
for AMS components that incorporates layout and process-
aware metamodels into different levels of the design process,
and (3) A layout optimization technique for AMS-SoCs blocks
with novel Ant Colony (ACO), Simulated Annealing (SA), and
Gravitational Search Algorithm (GSA) algorithms.

The rest of this paper is organized as follows: A brief
discussion on the proposed design flow approach is presented
in section II. Section III presents the background of Kriging
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Fig. 1. Proposed design flow for metamodel-assisted ultra-fast optimization.

techniques. An overview of the novel optimization algorithms
is presented in section IV. A discussion of the experimental
results, analysis and comparisons is presented in section V
and finally, a summary conclusion and future research ideas
are presented in section VI.

II. PROPOSED KRIGING-ANN METAMODEL METHOD

Kriging techniques achieve modeling of process variation
effects by taking into account the correlation between design
parameters especially for designs in the deep nanometer range.
The details of Kriging metamodeling are discussed in Section
III. The drawback of Kriging is the calculation of the weighting
matrix equations that are used are potentially time expensive
for very large design spaces. In order to limit this time
factor, the characteristics of Kriging are combined with ANN
based metamodels. ANN metamodels have been explored for
nanoscale analog design and are reported to be robust, fast and
accurate for high dimensional designs [3]. ANN metamodels
are still not able to effectively model the effects of process
variation. The proposed process combines the Kriging based
metamodels by producing an intermediate set of sample points
(bootstrapping) which are then used to train an ANN meta-
model. The bootstrapped sample data generated by Kriging
techniques incorporates the process aware component into the
ANN generated metamodel. Optimization algorithms are then
used to explore the design space over the generated Kriging-
ANN metamodel resulting in final optimized designs which
are used for the final sizing of the physical layout. A high
level general design flow methodology of this process is shown
in Fig. 1. The proposed technique produces more process
aware accurate metamodels than plain ANN metamodels which
are computationally less time expensive than plain Kriging
metamodels.

A more detailed process is shown in Fig. 2. The first phase,
labeled A, constitutes the baseline logical and physical design
and functional verification of the circuit. The schematic and
physical designs are simulated for functional verification of
the performance objectives of the circuit design. The next
phase labeled B involves the generation of the process aware
metamodel. A full blown (RLCK) netlist is used to ensure
silicon accuracy of the design. The sample points are generated
using LHS techniques which are then fed into the Kriging

function generator to generate an intermediate set of data
points infusing process aware characteristics. The bootstrapped
points are used to generate the Kriging-ANN metamodels
using an ANN trainer. Finally the last phase is the design
optimization by exploration with optimization algorithms.
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Fig. 2. Proposed process variation design optimization flow.

III. KRIGING METAMODELING

A. Kriging Based Metamodeling

Kriging prediction techniques, originally applied in geosta-
tistical fields, have since been explored for other applications
such as circuit design [5], [6]. Kriging combines polynomial
regression with a stochastic approach to mitigate the determin-
istic nature of computer expressions. Kriging equations can be
expressed in the form of:

y(x0) =

L∑
j=1

λjBj(x) + z(x), (1)

where y(x0) is a stochastic function which predicts the re-
sponse of the design point (x0). {Bj(x), j = 1, · · · , L}
is a specific set of basis functions over the design domain
DN , λj are fitting coefficients (also known as weights) to be
determined based on the Kriging method applied.

In calculating the weights λj for estimating Kriging func-
tions, the autocorrelation between the input parameters is
accounted and characterized by the covariance function [7]:

r(s, t) = Corr(z(s), z(t)). (2)

This property of Kriging prediction techniques is explored to
model the effects of process variation on circuit design meta-
models where the correlation between the process variation of
the design and process parameters is taken into consideration.
The Kriging metamodel process is shown in Fig. 3.

B. Artificial Neural Network Metamodeling

ANN models consist of simple computational elements
with a rich interconnection between each element. They are



Fig. 3. Geostatistical Kriging metamodel generation process.

modeled after biological neural networks which operate in a
parallel and distributed fashion. The neural networks create
models over a set of inputs by training the weights of the
interconnections. Multilayer and radial neural networks are few
of the commonly employed neural networks. The multilayer
network which is used in this work uses a combination of
non-linear activation function in a hidden layer and a linear
activation function in the output layer. The linear layer of the
function output can be expressed as follows:

vi =

s∑
i=1

wjixi + wj0 , (3)

where wji is the weight of the connection between the jth
element in the hidden layer and the ith component in the
input layer xi. The input layer is represented using a sigmoid
function such as follows:

bj (νi) = tanh (λvj) (4)

For this work, the ANN metamodel was created us-
ing a MATLAB toolbox which implements the Levenberg-
Marquardt optimization algorithm [8]. The Kriging-ANN
metamodel generation flow is shown in Fig. 4.
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IV. OPTIMIZATION ALGORITHM: GRAVITATIONAL
SEARCH ALGORITHM

Gravitational Search Algorithm (GSA) was introduced as a
new heuristic optimization algorithm based on the Newtonian
laws of gravity [9]. The proposed GSA algorithms models
the search agents as mass objects varying in design points by
the location of the masses. At the same time the performance
object is modeled as the mass of the object. The heavier masses
correspond to better performing agents As the agent masses
become heavier, they attract other agents towards them by
gravity force. In the process pull the search agents towards an
area with a likely optimal solution. Agents which attract other

masses become heavier and move slower. Thus, concentrating
in a search area with a likely optimal solution while lighter
masses are able to move faster exploring other search locations.
The selection of the rate of attraction is an important step in
order to fully utilize the exploration and exploitation features
of this algorithm. The exploration feature is the capability of
actively stratifying the design space while exploitation is the
efficiency of locating optimal solution in a likely optimal area.

A high-level overview of the GSA algorithm is shown
in Fig. 5. The search agents, for example a set of design
parameters, are denoted by their locations and masses as Mw,
Mx, My , and Mz in the design space. The location of each
agent at any particular time is shown and the quality of solution
is denoted by the mass size of the agent. Mz , currently has the
best quality while Mw has the worst. The underlying principle
of the algorithm is shown using the forces acting on search
agent My as an example.
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V. RESULTS AND ANALYSIS

In this section, the experimental results of the proposed
design flow methodology which was illustrated with the design
of an 180 nm Phase Locked Loop (PLL) design [10]. The PLL
which is a closed feedback loop circuit system, is an ideal
circuit for this study. It is widely used in many analog/mixed
signal systems including processors, Field-Programmable Gate
Arrays (FPGAs) and in telecommunication applications. The
major components of the PLL are the phase detector, charge
pump, voltage controlled oscillator (VCO) and frequency di-
vider. A system diagram is shown in Figure. 6.
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Fig. 6. High level system diagram for the PLL.

The optimization result of the proposed Kriging-ANN
metamodel is shown in Table I. The power consumption is
reduced by approximately 79%. The locking time is also
reduced by 4 %. The result of the algorithm operation is shown
in Fig. 7. It is seen from the figure that an optimal power
consumption of 1.67 mW is obtained after 377 iterations. It
can also be seen that the algorithm has very fast convergence
rate due to its strong attractive features. On average, the GSA
is able to converge to an optimal power consumption in about
400 iterations.



TABLE II. STATISTICAL ANALYSIS FOR ACCURACY OF NEURAL NETWORK METAMODEL FOR PLL FOMS.

CircuitCircuit Kriging-ANNKriging-ANN KrigingKriging ANNANN
Value Value Error (%) Value Error (%) Value Error (%)

PPLL
Mean 2.4 mW 2.4 mW 3.2 2.5 mW 0.8 2.5 mW 0.8
STD 0.4 mW 0.3 mW 19.0 0.5 mW 21.4 0.7 mW 64.3

FPLL
Mean 2.6 GHz 2.5 GHz 5.6 2.6 GHz 0.1 2.7 GHz 5.4
STD 10.9 MHz 41.9 MHz 282.9 3.7 MHz 66.0 51.9 MHz 373.9

LckPLL
Mean 5.5 µs 5.1µs 7.2 5.5 µs 0.07 5.2 µs 5.6
STD 0.7 µs 0.4 µs 38.9 0.6 ns 10.2 1.0 µs 40.3

JPLL
Mean 16.8 ns 14.7ns 10.2 16.8ns 0.1 17.9 ns 6.6
STD 1.3 ps 4.5 ps 240.9 0.7ps 48.5 19.1 ps 1352.2
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Fig. 7. Optimization steps of the PLL.

TABLE I. FINAL OPTIMIZATION RESULTS FOR THE PLL.

Metric Power (mW) Locking Time (ns) Area (µm2)

Baseline Design 8.27 2.74 525 × 326
Optimal Optimal 1.67 2.63 525 × 326
Reduction 79 % 4 % 0 %

A comparison of the Kriging, ANN, Kriging ANN meta-
models is shown in Table II. The mean (µ) and standard
deviation (σ) for the FoMs in each of the metamodels are
presented. From the results, the Kriging metamodels are shown
to be most accurate on both the mean (µ) and (σ) values for all
FoMs. The Kriging bootstrapped neural network metamodel on
the other hand is shown to be more accurate on the (σ) values
than the plain neural network metamodel but less accurate
on the (µ) values. This difference is expected because while
bootstrapping infuses the autocorrelation property of Kriging
based techniques, some error is also introduced as well.

Table III shows the time cost for the Monte Carlo Anal-
ysis on each metamodel. The Table shows a speedup of
approximately 25 times in time cost for the Monte Carlo
Simulation of 1000 runs for the Kriging bootstrapped model
over traditional Kriging. The significant improvement in time
cost is large enough to mitigate the minimal error incurred
in the metamodel. It may be noted that the Monte Carlo
simulation time on the SPICE models is approximately 5
days, which highlights the huge time gain with the use of
metamodels.

TABLE III. METAMODEL TIME ANALYSIS COMPARISON.

Model Kriging-ANN Kriging ANN

Time 19 s 468 s 19 s
Speedup 24.63× 1 24.63×

VI. CONCLUSION AND FUTURE RESEARCH

In this work, a novel design flow methodology has been
proposed to reduce the effort involved in current nano-CMOS
IC design. The proposed methodology uses geostatistical

Kriging-ANN metamodeling techniques for fast and accurate
design space exploration. Kriging based techniques generate
metamodels that accurately capture the global design space
along with the effects of process variation and are combined
with fast ANN techniques. Comparisons with exhaustive sim-
ulations show that Kriging-ANN predicted metamodels are
more process aware accurate than ANN metamodels. The
accurate Kriging based metamodels have been combined with
optimization algorithms which efficiently explore the design
space for optimal design parameters. An illustrative design
with an 180 nm PLL shows a power consumption improvement
of about 79 % and significantly reducing simulation time
compared to plain Kriging techniques by about 25 times. For
future research, the proposed methodology could be extended
to multi-objective optimization algorithms.
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