
Kriging Bootstrapped Neural Network Training for
Fast and Accurate Process Variation Analysis

Oghenekarho Okobiah1 and Saraju P. Mohanty2, and Elias Kougianos3

NanoSystem Design Laboratory (NSDL, http://nsdl.cse.unt.edu)
University of North Texas, Denton, TX 76207, USA.

E-mail ID: oo0032@unt.edu1, saraju.mohanty@unt.edu2, and eliask@unt.edu3

Abstract—Speeding up the design optimization process of
Analog/Mixed-Signal circuits has been a subject of active re-
search. Techniques such as metamodeling, artificial neural net-
works, and optimization over SPICE netlists have been used.
While the results are accurate and promising, the effects of pro-
cess variation on design space exploration still persist. Metamod-
els created by existing techniques are still not variation aware.
This paper presents a novel technique for fast and accurate
process variation analysis of nanoscale circuits. The technique
combines traditional Kriging with an artificial neural network
(ANN) to achieve the objective. Kriging captures correlated
process variations of the circuits and accurately trains the ANN to
generate the metamodels. The proposed technique uses Kriging
to bootstrap target samples used for the ANN training. This
introduces Kriging characteristics, which account for correlation
effects between design parameters, to the ANN. As a case study
of the proposed method, Kriging bootstrapped trained ANN
metamodels are presented for an 180 nm Phase-Locked Loop
(PLL) circuit design.

Keywords-Kriging, bootstrap techniques, neural networks,
PLL, process variation

I. INTRODUCTION

The development and improvement of metamodeling tech-
niques has been gradually increasing in recent years. Signif-
icant research has been published on various metamodeling
techniques for nano-CMOS applications. The goal has been
to develop accurate metamodels with lower computational
time costs. Extensive research work exploring polynomial,
artificial neural network (ANN) and Kriging techniques have
been presented in [1], [2]. ANNs are appealing because of
their high accuracy and relative time efficiency. However, with
the aggressive scaling of integrated circuit design, the number
of design and process parameters that must be taken into
consideration for design space exploration also increases. To
accomplish the goal of improving the accuracy of design in
the deep nanometer regions with increased number of design
parameters, a particular optimization technique that has been
explored is Particle Swarm Optimization (PSO) [3], [4]. PSO
techniques are part of genetic, evolutionary, and population
based algorithms.

While PSO and ANN metamodels have demonstrated in-
creased accuracy [5], [6], certain design factors such as device
parameter variations continue to pose a significant concern to
circuit performance estimation. Analog circuits are particularly
sensitive and hence prone to these effects [7].

Kriging based techniques for generating metamodels [8],
[9], [10], [11] take into account the correlation between
parameters and also incorporate a stochastic component that
mitigates the deterministic nature of computer simulations,
hence producing a more accurate statistical representation of
the modeled circuit. The disadvantage of Kriging is that each
point is predicted with a set of unique weights leading to
time inefficient metamodel generations on large design spaces.
ANN generated metamodels on the other hand are more time
efficient for simulations. In this paper we propose a metamod-
eling based design that combines the benefits of Kriging with
the accuracy and time efficiency of ANN models to produce
accurate metamodels which are also more effectively process
aware. Kriging is used to bootstrap the design samples used
for training the ANN models, thus introducing a process aware
component into the training set. We show that the Kriging
trained ANN models are more process aware accurate than
the bare ANN models.

The rest of this paper is organized as follows: the novel
contributions of the paper are discussed in section II. A
brief discussion of current related research is presented in
section III. The proposed Kriging trained ANN metamodeling
technique is presented in section IV. The case study circuit
is described in section V. The technique of process variation
aware analysis is discussed in section VI while the experimen-
tal results are presented in section VII. Finally, in section VIII
conclusion and future research ideas are presented.

II. NOVEL CONTRIBUTIONS

The aggressive scaling of CMOS technology for continues
to drive the research for more efficient design metamodeling
techniques. To this end, this paper presents the following
novel-contributions to the state-of-the art:

1) The first ever method that combines Kriging and ANNs
for fast and accurate metamodeling.

2) The bootstrapped Kriging accurately samples correlated
data from the design space for accurate capture of
process variation.

3) The Kriging-trained ANN generates very accurate meta-
models which have been created with minimal effort as
compared to the actual SPICE netlist.

4) A case study exploration using a 180 nm CMOS based
PLL design is presented.

Sample NSample 3Sample 2Data 1

ff

Kriging Function

Generator

ANN

Metamodel

Kriging

Metamodel

ff Kriging/ANN

Metamodel

ANN Training

Kriging trained ANN

Sample NSample 3Sample 2Sample 1

Data n-1Data 3Data 2Data 1
Data n-1Data 3Data 2Data 1

...

Bootstrapped Kriging

Generated Data

Fig. 1. Proposed Kriging Bootstrapped ANN Metamodel Generation Flow.

5) A comparative analysis of SPICE-netlist, Kriging, ANN,
and Bootstrapped-Kriging-ANN approaches are pre-
sented for the 180 nm PLL.

III. RELATED RESEARCH

Related research to this work includes the design and formu-
lation of modeling and metamodeling techniques. Polynomial
regression methods such as response surface methodology
(RSM) [12], [1], [13], [14] are one of the most common
and reliable methods explored. However, low order polyno-
mial regression techniques are not very accurate for global
design space exploration [15], [16]. Non-polynomial based
metamodels, particularly ANNs, have also been reported to
surpass polynomial regression [17], [18], [19], [20]. ANN
techniques use a learning process to continuously train weights
used in approximating these models. The training process is
critical in the development of ANN based models. A technique
popularly used is applying optimization algorithms to optimize
the weight training of ANN models [5]. It is this approach we
adopt to infuse the characteristics of Kriging by bootstrapping
the sample data points which are then used for the ANN
training. We demonstrate that the bootstrapped data points
enhance the modeling of process variation effects.

Monte Carlo (MC) simulations methods have been a reliable
and effective method for yield analysis of designs. In [21],
[7] hierarchical statistical analysis and regression based tech-
niques have been explored for variation analysis. The proposed
Kriging bootstrapped ANN model is analyzed for statistical
variation using the MC method.

IV. PROPOSED KRIGING BOOTSTRAPPED ARTIFICIAL
NEURAL NETWORK (ANN) METAMODELING

In this section, we introduce and discuss the proposed
Kriging bootstrapped Artificial Neural Network metamodeling
technique. First we briefly introduce traditional Kriging and
Artificial Neural Network metamodeling and then discuss our
proposed modifications. Our proposed kriging bootstrapped
Artificial Neural Network (ANN) metamodeling technique is
shown in Fig. 1.

A. Kriging Based Metamodeling

Kriging prediction techniques were originally applied in
geostatistics but have since been explored for other appli-
cations such as circuit design [10], [11], [9]. Kriging meta-
modeling combines polynomial regression with a stochastic
approach to mitigate the deterministic nature of computer
simulations. The Kriging equations can be expressed in the
form of the following:

y(x0) =

L∑
j=1

λjBj(x) + z(x), (1)

where y(x0), is a stochastic function which predicts the
response y at the design point (x0). {Bj(x), j = 1, · · · , L} is
a specific set of basis functions over the design domain DN

and λj are fitting coefficients (also known as weights) to be
determined based on the Kriging method applied.

In calculating the weights λj for estimating Kriging func-
tions, the autocorrelation between the input parameters is
accounted for and characterized by the covariance function
of the following form [22]:

r(s, t) = Corr(z(s), z(t)). (2)

This property of Kriging prediction is exploited to model
the effects of process variation on circuit metamodels. The
correlations between the process variation of the design and
process parameters are taken into consideration in calculating
the weights for the metamodel functions. The drawback of
Kriging is that the weight for each predicted point is unique
and involves matrix calculations which could become time
intensive for a large design space.

B. Artificial Neural Network Metamodeling

ANN models consist of simple computational elements with
rich interconnections between the elements. They are modeled
after biological neural networks which operate in a parallel and
distributed fashion. The neural networks create models over a
set of inputs by training the weights of the interconnections.
Multilayer and radial neural networks are few of the commonly

employed neural networks. The multilayer network which is
used in this work uses a combination of non-linear activation
functions in a hidden layer and a linear activation function in
the output layer. The linear layer of the function output can
be expressed as follows:

vi =

s∑
i=1

wjixi + wj0 , (3)

where wji is the weight of the connection between the jth
element in the hidden layer and the ith component in the input
layer xi and wj0 is a constant bias [23]. The input layer is
represented using a sigmoid function such as the following:

bj (νi) = tanh (λvj) (4)

The neural network utilizes an algorithm (a training func-
tion) that updates the weights and biases of the intercon-
nections to minimize the error between the predicted point
and the actual response. For this work, the ANN metamodel
was created using a MATLAB toolbox which implements the
Levenberg-Marquardt optimization algorithm [24].

C. Kriging Bootstrapped ANN Metamodeling

Metamodeling techniques based on Kriging prediction have
been explored in [10], [13]. In estimating performance points,
Kriging prediction techniques take into account the correlation
effects between design parameters. This characteristic is very
appealing and can be used to model the correlation effects
between design parameters due to process variation for design
processes deep in the nanometer range. The drawback to
Kriging based techniques is that the weights used for each
point prediction are unique and have to be calculated for
each performance point to be estimated using linear alge-
bra calculations (mostly matrix inversion). This can lead
to potential time consuming metamodel generation for high
dimensional designs and very large design spaces. Artificial
Neural Network (ANN) training, which has also been pre-
sented for NanoCMOS metamodeling in [23], has been shown
to be robust and accurate for high dimensional models [17].
While ANN also produces highly accurate models, it does not
effectively model process variation effects with correlations
present.

Hence, the proposed metamodeling technique aims to com-
bine Kriging and ANN to generate accurate models which
account for the effects of correlated process variation in a fast
and efficient manner. Fig. 1 highlights the already presented
methods for ANN and Kriging metamodel generation. For
each method sample data points are generated using a Latin
Hypercube Sampling (LHS) design and then are either fed
into an ANN trainer or a Kriging function generator. In
the proposed metamodel generation method, the sample data
points are fed into a Kriging generator that produces an
intermediate set of sample data points (bootstrapped) which
are then fed into the ANN trainer. This method feeds the
ANN trainer Kriging generated sample data points which are
process and correlation aware. We demonstrate that using the
Kriging generated sample data points will result in a more

robust metamodel which is process variation aware and also
less time intensive.

START

Circuit Schematic

Physical Design

DRC/LVS Netlist Extraction

and Parameterization

No

Yes

Parameterized Design

Variables, L, W, Vdd, Tox

Design

Specification
Functional

Verification

Yes

No

Specifications

met?

Specifications

met?

Perform LHS

Sampling

N Kriging point estimation
N Kriging bootstrapped

Data Points

 N Sample

Data Points

ANN Training

Test for Accuracy

YesNo Specifications

met?
DONE

DONE

Kriging Trained

ANN Metamodel

To Statistical

Variation Analysis

Fig. 2. Proposed Metamodel Design Flow

The methodology for the generation of the proposed
metamodel-based design flow is shown in Fig. 2. The first step
involves creating a SPICE netlist of the design. The functional
simulation of the circuit schematic is performed to ensure
the SPICE model meets design specifications. The physical
layout design is also constructed using Design Rule Check
(DRC) and Layout vs. Schematic (LVS) verification to ensure
a match to the circuit schematic. The physical layout design
is used to generate a silicon-aware accurate model (netlist).
The performance of the physical design is often degraded
due to the parasitic effects. A fully extracted parasitic netlist,
including resistance (R), capacitance (C) and self (L) and
mutual inductance (K) is used to ensure silicon-level accuracy.

The generation of the metamodel is based on the extracted
parasitic RCLK netlist. In order to generate data sample
points, the extracted parasitic netlist is parameterized for the
design and process variables and then simulated to eliminate
the strenuous task of physically varying the design parameters
on the physical layout design. The Latin Hypercube Sampling
technique is used in the proposed method to vary the design
and process parameters. LHS methods generate N random
sample points from a given design space. They divide the
design space into equal intervals and then randomly select
design points from an interval in such a way that each interval
appears once in a row-column matrix of the design space.
Several techniques may be used to select the data points
including uniformly, midpoints or randomly. We use Random
LHS which has been reported to generate more accurate

models [1]. The LHS parameter points are used as inputs to the
parameterized netlist to generate corresponding performance
outputs (data point) for each sample point.

The next step in the metamodeling process is the Kriging
bootstrapping of the data points. The generated sample points
are fed into a Kriging metamodel generator. We implement
the Kriging metamodel presented in our previous work [ref-
erence removed] for this process. We generate N Kriging
bootstrapped data points by using N−1 points and the Kriging
method to estimate the N th point. N iterations of this process
will generate N Kriging bootstrapped data points which are
then used for the ANN training.

The ANN training process is used to create metamodels for
each performance objective (Figure-of-Merit or FoM) charac-
terized for the design. In this research, 4 metamodels were
created for the Phase Locked Loop (PLL) circuit described in
Section V.

The final step of the metamodel design flow is the verifi-
cation and test of accuracy of the generated metamodel. The
statistical metric used to verify the accuracy is the Root of
Mean Square Error (RMSE). The expression of the RMSE is
given as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(
Yi − Ŷi

)2
, (5)

where N is the number of sampled points, Yi is the “true”
circuit response (SPICE simulation results) and Ŷi is the meta-
model predicted response. The RMSE measures the difference
between the metamodel and the SPICE model where a smaller
value indicates a more accurate model.

V. CASE STUDY CIRCUIT: A 180NM CMOS PLL

The phase locked loop (PLL) is a closed feedback loop
circuit system whose output signal is locked to a reference
input signal. The PLL is a critical component in many
Analog/Mixed Signal (AMS) systems including processors,
telecommunication devices,Field-Programmable Gate Arrays
(FPGAs), controllers and many other systems. The system
level diagram of a PLL shown in Fig. 3 shows the major
components of the PLL which include the phase detector,
the charge pump/loop filter, the voltage controlled oscillator
(VCO) and the frequency divider.

Input

Signal

Phase

Detector

Charge Pump/

Loop Filter

LC-VCODivider Output

Fig. 3. High level system diagram for the PLL

The reference clock feeds the input signal to the phase
detector, which compares and detects the phase difference

between the input signal and the output from the VCO. The
charge pump generates a supply charge in proportion to the
error detected in the phase difference. The generated signal
is then filtered by the loop filter to produce a control signal
which the VCO uses to produce an output signal which is
locked to the reference input signal. The divider is an optional
component of the PLL which is used to generate an output
signal which is a multiple of the reference input signal.

The schematic and physical layout design of the PLL using
a 180 nm CMOS technology was produced on the CADENCE
Virtuoso platform. Figure 4 shows the physical layout of the
design.

1
1
1
1
1
1

1
11
1
1

1
1

1
11
1

11
1
1
1
1
1

11
1111
11
11

11
11

11
111
1

111111 111111
1
1111
11
1111
11
11
11111111111 111111111
11
1
11
11
1111
11
111111 11111111 11111111
1111111111

1
1
1
1
1
1
1
1
111

1
111
1
1
1111111
11
1
1
11

11

1111
1111
1111

111

111
111
111

1111111

1
11
1
11
1
1

1

11

1
1
1
11
111

1
1
11
1
11
1
1

1

11

1
1
1
11
111

111111111111 111111111111 11111111 11111111111111111111111111111111 1111
11111111 1111111111 111111 111111111111 11111111111111111111 11111111 111111
11
11
11
1111
1111
1111
11111111 11111111 111111111111 11111111 111111111111 11111111111111111111 1111
1111111111111111111111111111111

1111 111111111111111
1
1
111111
111111
11
11
1111111111111111111111

1111111111

11111111111111111111
11
11

1
1
1

1
1
11111

11111111111

111
111
111
111
111
111
1111111111
1
1

11
11
11

111111111

1111 1111

1111

11
11
1
1
1
1
11
11
1
1
1
1

1
1

1
1

1
1

11

11

1
1
1
1
1
1
11
11
1
1

11
1

1
11
1

11

1
11
1

1

1
1
1
1

1

1

1111
11
11
11

11

11

1111 11111 1111
11
1
1
1
1
1
11 1111111 1111111111 11

111 1111111111 1111111
11 11 111
1111
11
11
111111

1
1
11
11

111111111111111111111
111111111111111111111111
11111111111111

11111111111111111111111111111111
1111111111111111111111111111

1111 111111
1
1111
11
1111
11
11
11111111111 111111111
1
1
1
11
11
11
1111 11111111 11111111
111111111

1111 11
1
1
1

111111111111
111111111111111111111111111111111111
1111111111111111111111111111

1
1
1

1
1
11111

111

1111111111111111111111
111
111
111111111111111111111
111
111
1111
1
1

11
11
11

111111111

1111 1111

1111

11
11
1
1
11
11
11
11
1
1
1
1

1
1

1
1

1
1

11

11

1
1
1
1
1
1
11
11
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
11
11
11
11

1

1
1
1
11
1
1
1

1
1

111
111
111
111

1
1
1
1

1
1
1
1

1
1
1
1
1

1
1
1
1

111
111
111
111

1
11
11

1
1
1

11
1
11
1111
11
1
1

1111
11

111
1
1
111
1
11
11

1111
1111

1
11
1

11111
1
1
11
11
11
1
1

11
11

11
11

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

11
11
11

1
1
111111

11111

11111

1
1

1
1
1
1

11111111111
11111111111
11111111111

1
1
1
1

1

11
1

1

11
11

11

11
11

111
1
1
1

11
1111111111111111

11
11
11
11

11
11
11

11111

11111
11111

11111111111
11111111111
11111111111

1
1

11
11
11

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11111111111111111111
11
11

1
1
1

1
1
111111111 111

111
111
111
111
111
1111111
1
1

11
11
11

111111111111

1111 1111

1111

11
11

1
1

11
11
1
1
1
1
11
11
1
1
1
1

1

1
1

1
1

11

11

1
1
1
1
1
1
11
11
1
1

11
11
1
1
1
1
1
1
1
1

1

1
1
1
1
1
1

11
11
11
11

1
1

1

1
111111
1111

111

1111
11111111

1
1
11

1
1

1

11111
11111

11
1

11

111
111
11

11111

1111111111
1111111111

1
1
1
1
1
1
1
1

1

1
1
1
11
11
11

11
11
11

11
11
11

11
11

11
11
11

11
11

111
111
111

111
111

111
111
111

111
111

11
11
11

11
11

11
11
11

11
11

111
111
111

111
111

111
111
111

111
111

11
11
11

11
11

11
11
11

11
11

1

111
111

111
111

111111111111111
111111111111111
111111111111111

11
11

11111
11111

11
11

11
11
1
1

11
11

1
1

11
11
1
1

1

11
11
1
1
1
1
1
1
1
1

1

11
11
11

11
11
11

11
11
11

11
11

11
11
11

11
11

111
111
111

111
111

111
111
111

111
111

11
11
11

11
11

11
11
11

11
11

111
111
111

111
111

111
111
111

111
111

11
11
11

11
11

11
11
11

11
111

1
1
1

1
1
1
1
11
11
11
11111
1
1
1
1
1
1
1
1
1

11111111
11111111111111
11111111111111
1111111
1111111

1
1
11111111111
11111111 111111111
1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

11
11
11
11
11

11111111
1
1
1
1

1
1
1
1
1

1
1
1
1
1

11
11
11
11
11

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

111
1
1
1
1

11111111
1
1
1
1

1111111

11
11

11
11
11

11
11

11
11

11
11
11

11
11

111
111

111
111

111
111
111

111
111

11
11

11
11

11
11
11

11
11

111
111

111
111

111
111
111

111
111

11
11

11
11

11
11
11

11
11

11111111111111
11111111111111
11111111111111
11111111111111
11111111111111
11111111111111
11111111111111

1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
111111111111111

111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
11111111111111111111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111

1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
11111111111111111111111111111111111

1111111111111111111
1111111111111111111
1111111111111111111
1111111111111111111
1111111111111111111
1111111111111111111
1111111111111111111
1111111111111111111

111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111

11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111

11
11
1
1

1

11
11
1
1

11
11

Fig. 4. Physical Layout Design for the 180 nm PLL

The PLL was characterized for power consumption, fre-
quency output, locking time and jitter. The baseline design
values are shown in Table I. The FoMs selected are Power
(PPLL), Frequency (FPLL), Locking time (LckPLL), and
Jitter (JPLL)). The design objective is the minimization of
power consumption using the locking time as optimization cost
and 21 parameters as design variables.

TABLE I
CHARACTERIZATION OF PLL FOR FIGURES OF MERIT (FOM)

Circuit PPLL FPLL LckPLL JPLL

PLL 2.48 mW 2.66 GHz 5.51 µs 16.80 ns

VI. PROCESS VARIATION AWARE STATISTICAL ANALYSIS

In this section we perform a process variation aware
statistical analysis of the generated Kriging trained Neural
Network metamodel. Monte Carlo simulation experiments are
a common method for the analysis of process variation on
analog circuits in order to estimate the yield and efficiency
of the design. Monte Carlo analysis enables an efficient
investigation of the design space by randomly generating a
distribution test case of design variables. The set of test cases
form a given probability distribution with a mean of the
nominal value of the variable. This is particularly efficient

in high dimensional designs where a test case simulation time
increases exponentially. For example, in our PLL case study
circuit which has 21 design and process parameters, even a
high and low test case will require 221 simulations.

The selection of design and process parameters significantly
affects the accuracy of the analysis. A sensitivity test is usually
performed to select parameters which are most sensitive to
performance measure. Reported research [7], [25], [26] shows
that the length (Ln, Lp), width (Wn, Wp) and oxide thickness
(Tox) have a significant effect on the performance shift. Ln,
Lp, Wn, Wp for the various sub-circuit components of the
PLL have been used as design parameters. The nominal values
are selected from the baseline design in section V and a
Gaussian distribution with 10 % standard deviation is used to
generate the sample set for the metamodel simulation. Fig. 5
summarizes the statistical analysis process. N = 1000 Monte
Carlo simulations are performed for each FoM.

Gaussian Data Point

Distribution

L,W, Vdd, tox

fr
eq

u
en

cy

Peformance Shift

Distribution

fr
eq

u
en

cy

From Metamodel

Design Flow

jitter

Kriging Trained ANN
frequency

Kriging Trained ANN
Lock_time

Kriging Trained ANN

Metamodel Power

jitter
frequencyLock_time

Powerfr
eq

u
en

cy

Fig. 5. Statistical Variation Analysis

The performance results of the Monte Carlo analysis are
compared with an analysis from the spice simulation of the
PLL design in the next section.

VII. EXPERIMENTAL RESULTS

In this section, simulation experiments are performed on
the case study 180 nm PLL design discussed in section V
to illustrate the effectiveness of our proposed approach. The
Kriging bootstrapped neural network metamodel is built using
the MATLAB Neural Network toolbox and the mGstat toolbox
[24], [27]. The model using the design flow discussed in
Section IV-C. The extracted parasitic netlist is parameterized
and used for the sample data point generation. mGstat is used
to implement the Kriging boostrapping of the sample data
points and then the metamodel is generated using the Neural
Network toolbox. Four metamodels are generated, one for each
Figure of Merit (FoM) (Power(PPLL) , Frequency (FPLL),
Locking time (LckPLL), and Jitter (JPLL)) characterized for
the PLL. A Monte Carlo method is used to evaluate the statis-
tical distribution of the four FoMs. A gaussian distribution of
1000 samples is used for the simulation analysis. The results
are presented in Fig. 7. Also presented in Figures 9 and 8
are statistical distributions using the artificial neural network
(ANN) and the Kriging based metamodels for comparison to
the proposed metamodel.

A. Results Analysis

Table II shows the accuracy of the proposed Kriging Boot-
strapped Trained Neural Metamodels. The Root Mean Square
Errors (RMSE) for each of the FoMs is shown. A lower value

of RMSE indicates a higher accuracy. The low RMSE values
thus demonstrate that the created metamodels are sufficiently
accurate and can be used for design exploration.

TABLE II
STATISTICAL ACCURACY OF KRIGING GENERATED POINTS

FoM’s RMSE

Power (PPLL) 2.51 x 10 −6

Frequency (FPLL) 5.68 x 10 −13

Locking Time(LckPLL) 5.01 x 10 −12

Jitter (LckPLL) 1.69 x 10 −19

The Monte Carlo results for the various metamodels are
shown in Table III. A Monte Carlo analysis on the SPICE
model is used as baseline to compare the results. The results
are also compared with the bare Kriging and Artificial Neural
Network (ANN) metamodels.

(a) Mean (b) STD

Fig. 6. Comparative Results with Kriging and Neural Network.

Table III shows the mean (µ) and standard deviation (σ)
for the FoMs in each of the metamodels. From the results
the Kriging metamodels are shown to be most accurate on
both the mean (µ) and (σ) values for all FoMs. The Kriging
bootstrapped neural network metamodel on the other hand is
shown to be more accurate on the (σ) values than the plain
neural network metamodel but less accurate on the (µ) values.
This difference is expected because while bootstrapping in-
fuses the autocorrelation property of Kriging based techniques,
some error is also introduced as well. Fig. 6 shows the errors
for the (µ) and (σ) as a bar chart. The histograms of the
Monte Carlo analysis for the Kriging bootstrapped, Kriging
and neural network metamodels are shown in Figures 7–9.

The value of the Kriging bootstrapped metamodeling tech-
nique is due to the reduced time cost for design exploration.
While Kriging models may be more accurate, the time cost
for design exploration for a large design space still becomes
too expensive due to the repetitive solution of large-dimension
systems of equations for each sample point. One obvious goal
for metamodel use is the improved time cost. Table in IV
shows the time cost for the Monte Carlo Analysis on each
metamodel.

The Table shows a speedup of approximately 25 times
in time cost for the Monte Carlo Simulation of 1000 runs
for the Kriging bootstrapped model over traditional Kriging.

TABLE III
STATISTICAL ANALYSIS FOR ACCURACY OF NEURAL NETWORK METAMODEL FOR PLL FOMS

Circuit Kriging-ANN Kriging ANN
Value Value error (%) Value error (%) Value error (%)

PPLL
Mean 2.48 mW 2.40 mW 3.22 2.50 mW 0.81 2.50 mW 0.81
STD 0.42 mW 0.34 mW 19.05 0.51 mW 21.43 0.69 mW 64.28

FPLL
Mean 2.66 GHz 2.51 GHz 5.64 2.66 GHz 0.11 2.74 GHz 5.38
STD 10.95 MHz 41.93 MHz 282.92 3.72 MHz 66.03 51.9 MHz 373.97

LckPLL
Mean 5.51 µs 5.11µs 7.26 5.51 µs 0.07 5.20 µs 5.63
STD 0.72 µs 0.44 µs 38.88 .58 ns 10.25 1.01 µs 40.27

JPLL
Mean 16.80 ns 14.69ns 10.25 16.78ns 0.12 17.91 ns 6.61
STD 1.32 ps 4.50 ps 240.91 0.68ps 48.48 19.17 ps 1352.22

1.5 2 2.5 3 3.5 4
x 10

−3

0

50

100

150

200

Power(w)

F
re

qu
en

cy

MonteCarlo Analysis of Power consumption

(a) Power

2.4 2.45 2.5 2.55 2.6 2.65 2.7
x 10

9

0

5

10

15

20

Frequency(Hz)
Fr

eq
ue

nc
y

MonteCarlo Analysis of Frequency

(b) Frequency

3 3.5 4 4.5 5 5.5 6 6.5 7
x 10

−6

0

20

40

60

80

100

120

Time(s)

F
re

qu
en

cy

MonteCarlo Analysis of Locking Time

(c) Locking Time

1.4 1.5 1.6 1.7 1.8 1.9 2
x 10

−10

0

50

100

150

200

Time(s)

F
re

qu
en

cy

MonteCarlo Analysis of Jitter

(d) Jitter

Fig. 7. Statistical Analysis of FoMs using Kriging Bootstrapped Trained Neural Network based metamodeling.

TABLE IV
MONTE CARLO TIME ANALYSIS COMPARISON FOR METAMODELS

Model Kriging-ANN Kriging ANN
Time 19 s 468 s 19 s
Speedup 24.63× 1 24.63×

The significant improvement in time cost is large enough to
mitigate the minimal error incurred in the metamodel. The
overall use of metamodels significantly reduces the simulation
time over SPICE models. It may be noted that the Monte
Carlo simulation time on the SPICE models is approximately
5 days, which highlights the huge time gain with the use of
metamodels.

B. Comparative Research

Table V shows a brief comparison of metamodeling based
design techniques. The comparisons are only a perspective
and illustrate the applicability and viability of our proposed
method for statistical variability analysis. Kriging modeling
is presented in [9]. In [7] a polynomial based metamodeling
design including a statistical analysis on process variation
is presented. A polynomial regression based technique is
presented in [28]. The accuracy based on the RMSE value
of the models (except for [9] which uses MSE) is shown in
column 4 of Table V. The presented metamodels have been
generated for different circuits, and even when the circuits are
similar there are different silicon technology and performance
measures making direct comparisons impossible. Hence, the
comparisons are only for a broad perspective point.

2.3 2.4 2.5 2.6 2.7 2.8
x 10

−3

0

20

40

60

80

Power(w)

F
re

qu
en

cy

MonteCarlo Analysis of Power consumption

(a) Power

2.645 2.65 2.655 2.66 2.665 2.67
x 10

9

0

20

40

60

80

100

120

Frequency(Hz)

Fr
eq

ue
nc

y

MonteCarlo Analysis of Frequency

(b) Frequency

4.8 4.9 5 5.1 5.2 5.3 5.4 5.5
x 10

−6

0

20

40

60

80

Time(s)

F
re

qu
en

cy

MonteCarlo Analysis of Locking Time

(c) Locking Time

1.66 1.67 1.68 1.69 1.7 1.71 1.72
x 10

−10

0

20

40

60

80

Time(s)

F
re

qu
en

cy

MonteCarlo Analysis of Jitter

(d) Jitter

Fig. 8. Statistical Analysis of FoMs using Kriging based metamodeling.

TABLE V
COMPARATIVE ANALYSIS OF RELATED RESEARCH

Test
Research Metamodel Circuit Accuracy
Garitselov [28] Polynomial PLL 0.157

Yu [9] Kriging RO 0.5325 (MSE)
LC-VCO 0.5325 (MSE)

Kuo [7] Polynomial PLL 2.0× 10−4

This Paper Kriging-ANN PLL 2.51× 10−6

VIII. CONCLUSION

This paper presented a metamodeling design analysis, de-
sign exploration and optimization technique that combines
traditional Kriging and Artificial Neural Network to create
process aware metamodels. Kriging based techniques are used
to bootstrap sample data points which accommodates the cor-
relation characteristics of Kriging techniques into the sample
data. Simulation results indeed show an improved process
awareness on the metamodels generated for the test case of
an 180 nm Phase Locked Loop circuit. The Monte Carlo
Simulation time also improved by approximately 25 times. The
preliminary results are promising. Future research is planned
to explore further techniques to improve the nominal accuracy
of the designs.

REFERENCES

[1] O. Garitselov, S. Mohanty, and E. Kougianos, “A Comparative Study of
Metamodels for Fast and Accurate Simulation of Nano-CMOS Circuits,”
Semiconductor Manufacturing, IEEE Transactions on, vol. 25, no. 1, pp.
26–36, 2012.

[2] O. Okobiah, S. P. Mohanty, E. Kougianos, and M. Poolakkaparam-
bil, “Towards Robust Nano-CMOS Sense Amplifier Design: A Dual-
Threshold versus Dual-Oxide Perspective,” in Proceedings of the 21st
ACM Great Lakes Symposium on VLSI, 2011, pp. 145–150.

[3] N. Jin and Y. Rahmat-Samii, “Advances in Particle Swarm Opti-
mization for Antenna Designs: Real-Number, Binary, Single-Objective
and Multiobjective Implementations,” Antennas and Propagation, IEEE
Transactions on, vol. 55, no. 3, pp. 556–567, 2007.

[4] C. Coello, G. Pulido, and M. Lechuga, “Handling Multiple Objectives
With Particle Swarm Optimization,” Evolutionary Computation, IEEE
Transactions on, vol. 8, no. 3, pp. 256–279, 2004.

[5] I. Vilović, N. Burum, and D. Milić, “Using Particle Swarm Optimization
in Training Neural Network for Indoor Field Strength Prediction,” in
ELMAR, 2009. ELMAR ’09. International Symposium, 2009, pp. 275–
278.

[6] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural
Networks, 1995. Proceedings., IEEE International Conference on, vol. 4,
1995, pp. 1942–1948.

[7] C.-C. Kuo, M.-J. Lee, C.-N. Liu, and C.-J. Huang, “Fast Statistical
Analysis of Process Variation Effects Using Accurate PLL Behavioral
Models,” Circuits and Systems I: Regular Papers, IEEE Transactions
on, vol. 56, no. 6, pp. 1160–1172, June 2008.

[8] W. Van Beers, “Kriging Metamodeling in Discrete-Event Simulation: An
Overview,” in Proceedings of the Winter Simulation Conference, 2005,
pp. 202–208.

[9] G. Yu and P. Li, “Yield-Aware Analog Integrated Circuit Optimization
Using Geostatistics Motivated Performance Modeling,” in Computer-
Aided Design, 2007. ICCAD 2007. IEEE/ACM International Conference
on, Nov. 2007, pp. 464–469.

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6
x 10

−3

0

50

100

150

200

250

Power(w)

F
re

qu
en

cy

MonteCarlo Analysis of Power consumption

(a) Power

2.65 2.7 2.75 2.8 2.85 2.9 2.95
x 10

9

0

20

40

60

80

Frequency(Hz)

Fr
eq

ue
nc

y

MonteCarlo Analysis of Frequency

(b) Frequency

0 1 2 3 4 5
x 10

−6

0

10

20

30

40

50

Time(s)

F
re

qu
en

cy

MonteCarlo Analysis of Locking Time

(c) Locking Time

0.5 1 1.5 2 2.5 3 3.5
x 10

−10

0

50

100

150

200

250

Time(s)

F
re

qu
en

cy

MonteCarlo Analysis of Jitter

(d) Jitter

Fig. 9. Statistical Analysis of FoMs using Neural Network based metamodeling.

[10] O. Okobiah, S. P. Mohanty, E. Kougianos, and O. Garitselov, “Kriging-
Assisted Ultra-Fast Simulated-Annealing Optimization of a Clamped
Bitline Sense Amplifier,” VLSI Design, International Conference on,
vol. 0, pp. 310–315, 2012.

[11] H. You, M. Yang, D. Wang, and X. Jia, “Kriging Model Combined with
Latin Hypercube Sampling for Surrogate Modeling of Analog Integrated
Circuit Performance,” in Proceedings of the International Symposium on
Quality of Electronic Design, 2009, pp. 554–558.

[12] M. Zakerifar, W. Biles, and G. Evans, “Kriging Metamodeling in
Multi-objective Simulation Optimization,” in Proceedings of the Winter
Simulation Conference (WSC), 2009, pp. 2115–2122.

[13] W. E. Biles, J. P. C. Kleijnen, W. C. M. van Beers, and I. van Nieuwen-
huyse, “Kriging Metamodeling in Constrained Simulation Optimization:
An Explorative Study,” in Proceedings of the 39th Winter Simulation
Conference, 2007, pp. 355–362.

[14] G. Dellino, J. Kleijnen, and C. Meloni, “Robust Simulation-Optimization
using Metamodels,” in Proceedings of the Winter Simulation Conference
(WSC), Dec. 2009, pp. 540–550.

[15] B. Ankenman, B. Nelson, and J. Staum, “Stochastic Kriging for
Simulation Metamodeling,” in Proceedings of the Winter Simulation
Conference, Dec. 2008, pp. 362–370.

[16] V. Aggarwal, “Analog Circuit Optimization using Evolutionary Al-
gorithms and Convex Optimization,” Master’s thesis, Massachusetts
Institute of Technology, May 2007.

[17] L. Wang, “A Hybrid Genetic Algorithm- Neural Network Strategy for
Simulation Optimization,” Applied Mathematics and Computation, vol.
170, no. 2, pp. 1329–1343, 2005.

[18] A. Khosravi, S. Nahavandi, and D. Creighton, “Developing Optimal
Neural Network Metamodels Based on Prediction Intervals,” in Interna-
tional Joint Conference on Neural Networks, June 2009, pp. 1583–1589.

[19] C. W. Zobel and K. B. Keeling, “Neural Network-based Simulation
Metamodels for Predicting Probability Distributions,” Computers and
Industrial Engineering, vol. 54, pp. 879–888, May 2008.

[20] I. Sabuncuoglu and S. Touhami, “Simulation Metamodelling With Neu-

ral Networks: An Experimental Investigation.” International Journal of
Production Research,, vol. 40, no. 11, pp. 2483–2505, 2002.

[21] E. Felt, S. Zanella, C. Guardiani, and A. Sangiovanni-Vincentelli,
“Hierarchical Statistical Characterization of Mixed-Signal Circuits Using
Behavioral Modeling,” in Computer-Aided Design, 1996. ICCAD-96.
Digest of Technical Papers., 1996 IEEE/ACM International Conference
on, Nov 1996, pp. 374–380.

[22] G. Bohling, “Kriging,” Kansas Geological Survey, Tech. Rep., 2005.
[23] O. Garitselov, S. Mohanty, E. Kougianos, and G. Zheng, “Particle

Swarm Optimization over Non-Polynomial Metamodels for Fast Process
Variation Resilient Design of Nano-CMOS PLL,” in Proceedings of the
great lakes symposium on VLSI, ser. GLSVLSI ’12, 2012, pp. 255–258.

[24] MATLAB, MATLAB and Neural Network Toolbox Release 2012b.
Natick, Massachusetts, United States: The MathWorks Inc., 2012.

[25] K. Kang, B. C. Paul, and K. Roy, “Statistical Timing Analysis using
Levelized Covariance Propagation,” in Proceedings Design, Automation
and Test in Europe, 2005, pp. 764–769.

[26] S. Nassif, “Modeling and analysis of manufacturing variations,” in
Custom Integrated Circuits, 2001, IEEE Conference on., 2001, pp. 223–
228.

[27] mGstat: A Geostatistical Matlab Toolbox. [Online]. Available: mgstat.
sourcefourge.net

[28] O. Garitselov, S. Mohanty, and E. Kougianos, “Accurate Polynomial
Metamodeling-Based Ultra-Fast Bee Colony Optimization of a Nano-
CMOS Phase-Locked Loop,” ASP Journal of Low Power Electronics
(JOLPE), vol. 8, no. 3, pp. 317–328, June 2012.

