
A Highly Parameterizable Simulator for
Performance Analysis of NoC Architectures

Dhiman Ghosh*, Prasun Ghosal*, Saraju P. Mohanty**
*Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, WB, INDIA

**University of North Texas, Denton, TX 76203, USA
Email: dghosh.cse@gmail.com, prasun@ieee.org, Saraju.Mohanty@unt.edu

Abstract—Network, wireless, and multimedia applications exe-
cuting on embedded chips demand massive data processing with
lesser power consumption today. Journey of a new paradigm in
the domain of parallel processing - Network-on-Chip (NoC) starts
here. But unlike its simpler look both the design and test costs
for this kind of real many-core chips are too high. So efficient
and accurate performance estimation tools with respect to the
real application ASICs are needed for system level optimization
and performance analysis in a cost-effective and flexible way.
Simulator that allow exploring the best design options for a
system before actually building it has been becoming inevitable
in system design and optimization flows. Very few simulators
have been developed so far addressing such problems. Some
of them are popular with its better accuracy and others with
a large set of configurable architectural parameters and traffic
options. In this paper, a novel GUI based highly parameterizable
NoC simulator has been proposed designed using Qt and System
C that is capable of handling real embedded workload traces
with custom task allocation support for early exploration of
application specific Network-on-Chips.

Index Terms—NoC Simulator, Real Traffic, Custom Task-
mapping, System C and Qt

I. I NTRODUCTION

With the rapidly approaching billion transistors era non-
scalable wire delays, errors in signal integrity, and unsynchro-
nized communications have become the primary problems to
be dealt with. These problems may be overcome by the use
of efficient Network on Chip (NoC) architectures [1], [2]. But
it demands high speed data transferring as well as low power
consumption.

Having a large architectural alternatives for implementation,
the design space of Network-on-Chips is also huge. Along
with the increase in number of cores and complexity of
topology, hardware design becomes more complicated and
time consuming. As the hardware prototype boards are not
available until very late stages of system design, the embedded
software development also get delayed. The only way out is to
rely on simulation on host computers. Therefore efficient and
accurate performance estimation tools are needed for system
level optimization and early exploration of the performance.

In this perspective the aim of this paper is to suggest a novel
simulation system for Network-on-chips. The structure of the
paper is as follows. In Section II a brief non-technical idea
of the novel contribution of this work has been given where
the full technical specification is in Section IV. In between
Section III contains description of some related works as well

the motivation. Section V contains the experimental details
that has been carried out and the results as well. Section VI
concludes the paper by giving some important extensions and
possible future works of our initiative.

II. N OVEL CONTRIBUTION

Development of NoC Simulators solved many of the earlier
problems those were inevitable without the early exploration
of the system. Another problem knocking at the door now-a-
days is the simulation accuracy issue as well as realistic per-
formance estimation [3]–[9]. Very Few simulators have been
developed and almost all of those simulates with synthetic
workloads that can be far from accurate performance. To the
best of our knowledge, till date, no dedicated NoC simulator
has been developed so far with dedicated parallel benchmark
support such as SPEC CPU-2006, SPLASH-2, or PARSEC.
As an alternative to use full system simulators very less steps
have been taken [3]. Novelties of the proposed simulator lie
in many folds.

• Firstly, the simulator is highly parameterizable.
• Secondly, it can address real workload traces [10].
• Thirdly, it has the flexibility of customized task mapping

that will be beneficial both for architecture designers and
operating firmware developers.

III. B ACKGROUND AND MOTIVATION

Among the very few simulators developed so far just some
of them have global acceptance in terms of accuracy, ease
of use, and configurability. Noxim [11] is one of the popular
and powerful simulators developed using SystemC that accepts
a large set of configurable parameters over synthetic traffic
pattern and gives output in terms of a wide variety of perfor-
mance measurement metrics. Other popular simulators include
Booksim [12] developed in C++ by Jiang et. al. that has a large
set of input parameters but the output measurement practice
used is not satisfactory compared to today’s technology-centric
demand. NIRGAM [13] and Gpnocsim [14] are also popular
ones developed in SystemC and Java respectively. As there
is no dedicated benchmark developed for NoCs yet, all of
them have focused on synthetic traffic simulation. Some other
groups have tried to incorporate NoC simulators inside or
along with Full-System Simulators to inject live traffics but
none of them become popular for their complex usage practice.

Fig. 1. General Architecture of a System C based NoC Simulator.

NoCTweak [15] is another one recently developed at Univer-
sity of California and probably the first one that supports both
synthetic and real embedded application workload traces for
real traffic generation that we have adopted in our work for
traffic generation. But this simulator supports only a limited
predefined task-mapping schemes and also no custom task
allocation support which is an essential feature for system
application and task-mapping algorithm developers. We have
also adopted the basic architectural concept and measurement
data as used in Noxim for standardization purpose as well as
for comparison.

Figure 1 shows a basic functional block diagram of SystemC
based NoC simulator. A sample 3 x 2 2D mesh architecture
is considered for illustration purpose. The red square block
represents the magnified view of a part of the sample archi-
tecture.

IV. PROPOSEDSIMULATOR MODEL

A. Functional Blocks

Proposed simulator model incorporates typical NoC sim-
ulator functional blocks as depicted earlier in figure 1 over
the SystemC simulation kernel. Figure 2 shows the additional
functional blocks used to incorporate the novel features ofthe
proposed work. The arrows represent flow of data or logic. In-
put specification includes architectural settings, buffersettings,
packet settings, routing settings with custom routing support,
hotspot influence settings etc. Final Output is primarily the
result in terms of some performance metrics parameters like
total received packets/flits, latency, energy and throughput.
Optional detailed simulation log lists detailed packet routes,
task allocations as well as waveform traces for detailed packet
level analysis.

B. System C and the Core Design

The developed simulator is based on System C [16], a C++
class and macro library that provides a simulator interfacein

C++, which is faster and more flexible than RTL simulators. It
helped to make it event-driven and highly parameterizable for
analysis in a concurrent way. The architectural componentsare
incorporated in the simulation system in object oriented fash-
ion using separate individual modules. This kind of modular
design is very useful for future extension of the work such as
incorporating a new topology.

Specification

Production

GUI Input

Modules Algorithms

Simulation Kernel

System C

VCD File GUI Output

Fig. 3. Simplified Block diagram of our simulator model.

C. Incorporating Real Workloads for Benchmarking

Besides the common synthetic traces, the proposed simula-
tor supports a wide variety of real time embedded application
workload traces such as MPEG4 Decoder, WiFi Baseband
receiver etc. These embedded application traces are stored
in the form of parallel task communication graph and used

Fig. 2. Additional Functional Blocks Incorporated to handle real workloads and mapping tasks.

for packet generation based on their required bandwidth and
global packet injection ratio. This results in better estimation
of performance before the physical chip level deployment.

0 1 2

3 4 5

6 7 8

9 10 11

Fig. 4. Task-Graph for MPEG4 Decoder with 12 tasks.

Figure 4 illustrates a simple task-graph of MPEG4 decoder
application with 12 parallel tasks. The directed lines showthe
direction of communication with certain bandwidth between
the tasks that are represented by nodes.

D. Qt and the GUI

The proposed simulator interface is developed using Qt
[17]. Qt is a cross-platform application and UI framework for
C++ and QML developers. This GUI works like a wrapper of
the whole tool without which custom configurations, specially
the custom task-mapping could be a troublesome job. It also
automates several other things and improves ease of use to a
large extent considering its large set of configuring parameters.

The basic block diagram of our simulation tool is depicted in
figure 3.

E. Task-Mapping

Task-mapping is essential for simulating Real application
traffics with multiple parallel communications. Each unique
communication between any two tasks with a certain band-
width limit (which is responsible for a certain rate of packet
injection in a tile) can be allocated to a core for dedicated pro-
cessing. Custom mapping of tasks to the cores are supported
upto a maximum of 64 parallel tasks to 64 different cores.
Traditional task-mapping algorithms like Straight task-to-core,
Random, Near-optimal algorithms are also incorporated to
measure performance in standard scenario if we are only
concerned with other architectural parameters such as different
buffer depths, global packet injection ratio etc rather than
system software development for task-allocation [18].

Fig. 5. GUI Screenshot : Architecture Modeling.

Fig. 6. GUI Screenshot : Advanced Configuration.

F. GUI Screenshots

Two screenshots of the developed simulator have been
added in this paper to convey a brief idea about the interface
and its ease of use. The interface shown in the figure 5 is the
configuration tab containing most of the input parameters and
figure 6 is showing the advanced settings tab for all the critical
custom operations.

V. EXPERIMENTAL RESULTS

The aim of our experiment is to distinguish the results
of different synthetic and real embedded application traffic
patterns so that the necessity of performing host computer
simulation with real traffics can be emphasized. It may not
produce performance estimation as accurate as full system
parallel benchmark traffics (as discussed earlier), but thetraffic
generated using the real embedded application workload traces
can give much more clear idea than the synthetic ones before
actually building it. The custom task allocation support inthis
regard will also help in early exploration of performance in
the field of system application development.

We have chosen MPEG4 Decoder application task graph
with 12 tasks for our experiments shown in the figure 4.M×N

dimension of the architecture is considered whereM×N ≥ L

for guaranteed parallel execution of the whole task; L is the
number of parallel communications for a particular task graph.
In our experiment, as we are considering MPEG4 Decoding
application, the total number of cores is 12 in optimal case.
Therefore, we have considered theM ×N value to be4× 3

(or can be3 × 4). The packet size has been fixed between
the range 2-10 flits and if not specified, the buffer depth is
4 flits long. XY routing algorithm has been used throughout
the whole process. The test simulations were performed for
10000 cycles with a warm up time of 1000 cycles.

A. Impact on Maximum Delay

Figure 7 shows the analysis of different workloads (both
synthetic and real). X-axis denotes delay in cycles and Y-
axis Packet Injection Rate (PIR) in flits/cycle/tile. Random
and Transpose are synthetic traffic models and rest two are real

embedded system workloads using Random Task-mapping and
Default Task-mapping respectively.

Fig. 7. Maximum Delay vs PIR for different workloads using 4-flit buffers.

From the graph, it is clear that there is a remarkable change
not only in numeric difference of cycle count but also in nature
of the graph. Unlike traditional S-curve in case of Synthetic
Random traffic or almost linearly approaching curve towards
threshold of Transpose traffic, a sudden rise in delay against
0.05 PIR (approximately) has been experienced in case of the
selected real traffic scenario which is an unavoidable factor to
be considered before actual physical level deployment.

B. Impact on Throughput

Figure 8 denotes the impact on throughput for different
workloads. Y-axis denotes throughput inn × 10

4 flits/cycle
and X-axis denotes the PIR in flits/cycle/tile.

Fig. 8. Throughput vs PIR for different workloads using 4-flit buffers.

The strongest impact experienced is in case of Throughput.
Lower PIRs as well as higher PIRs show a complete nature
compared to the results from synthetic traffic patterns. Lower
PIR performance is poor in case of experiments with real
workload traces and a sudden improvement in throughput
is also noticed after PIR 0.05 that continues throughout the
saturation period.

C. Impact on Latency

Figure 9 denotes the impact on Average Delay/Latency for
different workloads. Y-axis denotes Average Delay in cycles
and X-axis denotes the PIR in flits/cycle/tile.

There is no severe change in the shape of the curve
compared to synthetic traffic in this case. But higher average
delay is experienced throughout the session.

Fig. 9. Average Delay vs PIR for different workloads using 4-flit buffers.

D. Impact on Energy

Figure 10 denotes the impact on Total Energy for different
workloads. Y-axis denotes Average Delay in Micro Jule (µJ)
and X-axis denotes the PIR in flits/cycle/tile.

Fig. 10. Total Energy vs PIR for different workloads using 4-flit buffers.

Similar to the last result, the curve structure is also similar
to the one corresponding to synthetic traffic. But a notable gap
in energy consumption is experienced for higher PIRs in case
of real workload traces which is undoubtedly a very important
key factor to be considered before physical level design.

VI. CONCLUSION AND FUTURE WORK

In this work, we have developed a highly parameterizable
GUI based simulator based on System C and Qt for early
exploration of performance before actually building it. Its
support in custom task-to-core mapping and real embedded
traffic simulation made it an useful tool both for chip level
designers as well as operating software developers. Our exper-
iment demonstrate the importance of considering real traffics
over the synthetic ones as the performance differs by a large
extent (in lower global PIRs) for the same configuration and
thus the fruitfulness of this work.

However, the current development is based on Mesh topol-
ogy only. Incorporating full system benchmark traffics over
mesh as well as extension of the present work for other
topologies may be considered as the future work.

REFERENCES

[1] H. T. Axel Jantsch,Network on Chip. Kluwer Academic Publishers,
2004.

Fig. 11. Summary of Results using 4-flit buffers and 0.01 PIR.

[2] L. Benini and G. D. Micheli, “Networks on Chips: A New SoC
Paradigm,”IEEE Computer, vol. 35, pp. 70–80, January 2002.

[3] F. Trivino, F. Andujar, F. Alfaro, J. Sanchez, and A. Ros,“Self-related
traces: An alternative to full-system simulation for nocs,” in High
Performance Computing and Simulation (HPCS), 2011 International
Conference on, pp. 819–824, July 2011.

[4] M. R. P. Jaison Valmor Bruch and C. A. Zeferino, “BrownPepper: a
SystemC-based Simulator for Performance Evaluation of Networks-on-
Chip,” in Embedded and Distributed Systems Group, University of Vale
do Itaja UNIVALI, So Jos, BRAZIL, 2009.

[5] J. Owens, W. Dally, R. Ho, D. N. Jayasimha, S. Keckler, andL.-S.
Peh, “Research challenges for on-chip interconnection networks,” Micro,
IEEE, vol. 27, pp. 96–108, Sept 2007.

[6] A. J. R Thid, M Millberg, “Evaluating NoC communication back-bones
with simulation,” in 21st Norchip Conference, 2003.

[7] L. Mieszko, S. K. Sup, C. M. Hyon, R. Pengju, K. Omer, and D.Srinivas,
“DARSIM: a parallel cycle-level NoC simulator,” 2010.

[8] C. Jueping, H. Gang, W. Shaoli, Y. Lei, L. Zan, and H. Yue, “Opnec-
sim: An efficient simulation tool for network-on-chip communication
and energy performance analysis,” inSolid-State and Integrated Circuit
Technology (ICSICT), 2010 10th IEEE International Conference on,
pp. 1892–1894, Nov 2010.

[9] R. Al-Badi, M. Al-Riyami, and N. Alzeidi, “A parameterized noc simu-
lator using omnet++,” inUltra Modern Telecommunications Workshops,
2009. ICUMT ’09. International Conference on, pp. 1–7, Oct 2009.

[10] E. Pekkarinen, L. Lehtonen, E. Salminen, and T. Hamalainen, “A set of
traffic models for network-on-chip benchmarking,” inSystem on Chip
(SoC), 2011 International Symposium on, pp. 78–81, Oct 2011.

[11] F. Fazzino, M. Palesi, and D. Patti, “Noxim: Network-on-chip simulator,”
URL: http://sourceforge. net/projects/noxim, 2008.

[12] N. J. et al., “Booksim interconnection network simulator,” in Perfor-
mance Analysis of Systems and Software (ISPASS), 2013 IEEE Interna-
tional Symposium, 2013.

[13] L. Jain, “NIRGAM: A Simulator for Interconnect Routingand Mod-
elling,” June 2012.

[14] H. Hossain, M. Ahmed, A. Al-Nayeem, T. Islam, and M. Akbar,
“Gpnocsim - a general purpose simulator for network-on-chip,” in Infor-
mation and Communication Technology, 2007. ICICT ’07. International
Conference on, pp. 254–257, March 2007.

[15] A. T. Tran and B. M. Baas, “Noctweak: a highly parameterizable
simulator for early exploration of performance and energy of networks
on-chip,” inTechnical Report, VLSI Computation Lab, ECE Department,
UC Davis, July 2012.

[16] A. S. Initiative, “SystemC.” http://www.accellera.org/home/, 2014. [On-
line; accessed 3rd-July-2014].

[17] D. plc, “Qt Project Hosting.” http://qt-project.org/, 2014. [Online;
accessed 3rd-July-2014].

[18] H. Orsila, T. Kangas, and T. Hamalainen, “Hybrid algorithm for mapping
static task graphs on multiprocessor socs,” inSystem-on-Chip, 2005.
Proceedings. 2005 International Symposium on, pp. 146–150, Nov 2005.

