
Reversible Circuit Synthesis Using ACO and SA

based Quine-McCluskey method

Mayukh Sarkar, Prasun Ghosal

Bengal Engineering and Science University, Shibpur

Howrah 711103, WB, INDIA

Email: mayukh.sarkar1987@gmail.com, p ghosal@it.becs.ac.in

Saraju P. Mohanty

University of North Texas

Denton, TX 76203, USA

Email: saraju.mohanty@unt.edu

Abstract— With the tremendous growth in VLSI technology in
recent years, the Integration density of the transistors has reached
billions causing the scaling of transistors to touch the subatomic
dimension in deep submicron regime where laws of classical
physics can not survive. Due to inherent information loss and
other factors associated with irreversible computing, reversible
circuits are becoming more and more important in terms of
computing for present and future days. However, due to several
factors, known synthesis approaches of classical Boolean logic
like Karnaugh Map and Quine-McCluskey method cannot be
applied directly to synthesize a reversible logic. In this paper, we
propose a stochastic procedure to synthesize a reversible circuit.
This procedure is based on a modified version of classical Quine-
McCluskey method and is being used under the wrapper of two
intelligent stochastic search techniques, Simulated Annealing and
Ant Colony Optimization. The experimental results are quite
encouraging.

I. INTRODUCTION

With progressive scaling of transistors in VLSI technology

the integration density of the transistors has reached billions

following Moore’s Law [1] causing the scaling of transistors to

touch the subatomic dimension where laws of classical physics

can not survive in recent years. On the other hand, irreversible

computing suffers from consistent information loss. According

to Landauer’s Principle [2], loss of one bit of information has

an energy dissipation with the lower bound of kT ln(2). In

next few years, this energy is going play a dominant role in the

area of power aware high performance computing systems. All

these effects show that, the classical computing is approaching

a barrier [3], and the computation based on quantum physics

is becoming very much important for future days.

Computation with no loss of information is called reversible

computation, and Bennett showed that [4], zero energy dis-

sipation is possible only with reversible computing. So, the

reversible computing is going to play a dominant role in the

near future. It has many applications, including quantum com-

putation. Quantum gates are, by nature, reversible and provides

a powerful motivation to study reversible computation. Other

applications of reversible computing can also be found in the

domain of optical computing, DNA computing, low-power

CMOS design etc.

Synthesis approaches for reversible circuits are different

from traditional Boolean logic in several ways [5] due to

several factors such as equality of I/O numbers, acyclic nature,

absence of fanout, presence of garbage output etc. So, no

traditional Boolean circuit synthesis methods like Karnaugh

TABLE I: Table of a Reversible Function

a b c a b c

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 1 0 0

1 0 0 1 1 1

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 0 1 1

Map, Quine-McCluskey method etc. can directly be used to

synthesize a reversible circuit. Several approaches for the

synthesis of a reversible circuit have been proposed, most of

which are deterministic approaches, e.g., Saeedi et. al. [6]

proposed Moving Forward Synthesis Algorithm(MOSAIC),

Gupta et. al. [7] proposed an algorithm based on Positive

Polarity Reed-Muller(PPRM) expression. In this paper, the

Quine-McCluskey approach has been used in a modified

manner, under the wrapper of Simulated Annealing(SA) and

Ant Colony Optimization(ACO).

II. BACKGROUND

In this section, we will describe the background necessary

to understand this algorithm.

A. Reversible Functions

Definition 1: An n-input, n-output Boolean function f is

reversible if it maps each input uniquely to each output, and

vice-versa, i.e., there is an one-to-one mapping between input

and output.

A reversible function can be represented in the form of a truth

table or a permutation. For example, the truth table I can

also be represented as the permutation {0, 2, 1, 4, 7, 5, 6, 3}.

A reversible function can be realized by a reversible circuit,

which in turn, is a cascade of reversible gates. If a reversible

function f : I → O, where I is the input set, and O is

the output set, can be realized by reversible gate cascade

{G1, G2, ..., Gk}, then the function g : O → I can be realized

by same gate cascade in reversed order {Gk, Gk−1, ..., G1}.

There are several universal reversible gate libraries, among

which NCT (NOT, CNOT, TOFFOLI) library is used by our

algorithm to synthesize a reversible specification. The figures

of NOT, CNOT and n-bit Toffoli gate are shown in Figures

1a, 1b, and 1c.



(a) NOT
gate

•

(b)
CNOT
gate

•
•
•

(c) 4-bit
Toffoli
gate

B. Quine-McCluskey Method

Quine-McCluskey is an widely used approach for the syn-

thesis of classical irreversible Boolean circuit. In this approach,

first the minterm table of the required function f is created

by adding those inputs, for which the value of f is 1. Details

of this technique are omitted due to paucity of this space.

The standard Quine-McCluskey method is used in modified

manner in this algorithm. We have created the minterm tables

for each output bit by checking whether the corresponding

input bit has changed or not. Also, the prime implicant chart

is not being used. Heuristic evaluated by using minterm tables

are used by Simulated Annealing to determine the next best

gate of the gate cascade.

III. PROPOSED ALGORITHM

In this algorithm, initially, each ant starts with a blank

circuit, and adds a gate to the circuit based on a transition

probability. After adding a gate, the ant applies the Simulated

Annealing based Quine-McCluskey(SA-QM) method to find

out minimum circuits possible from the resulting circuit.

As soon as it finds out any suitable circuit, it imposes the

constraints of length and cost of the minimum circuit returned

by SA-QM to itself and the other ants coming next, and further

adds more gates to check for other possible circuits.

A. Simulated Annealing Based Quine-McCluskey Method

In this algorithm, the inputs are truth table, a circuit, length

and cost constraints. This method starts with a particular tem-

perature t. It then checks each gate one by one by adding them

to the circuit, and applies the circuit to the truth table. From

the resulting truth table, it calculates a heuristic value using

Quine-McCluskey approach, and removes the gate. Finally,

the gate that maximizes the heuristic is added to the circuit

with probability e(h(g)−hmax)/temperature, where h(g) is the

heuristic for the gate g, and hmax is the maximum heuristic

obtained before checking for gate g. The gate heuristic h(g)
for a gate g and a truth table tin is found as follows.

From the truth table tin, to find the gate heuristic h(g) for

gate g, gate g is applied to tin to get the output truth table tout.

The minterm table mb for each I/O bit b is created by adding

the input entries in mb, for which the bit b gets changed in

corresponding output. The minterm tables are then minimized

recursively according to Quine-McCluskey approach. From the

final minterm tables of all I/O bits, the heuristic is calculated

as follows.

h(g) = 100× (don′t care ratio+ one bit ratio)

− total length−Hamming distance (1)

1: procedure SA-QM(TruthTable, Circuit,
Length, Cost)

2: temperature ← INIT TEMP
3: i ← 1
4: circuit list ← blank list
5: while i ≤ ITERATION do

6: temp ← temperarture
7: circuit ← Circuit
8: length loop ← 1
9: while length loop ≤ Length do

10: heuristic ← −∞

11: for all possible gate g do

12: Add g to the circuit
13: Apply circuit to the TruthTable
14: if circuit solves TruthTable then

15: Add circuit to the circuit list
16: break from inner while loop

17: end if

18: Determine heuristic value h(g) of

the resulting Truth Table

19: if h(g) > heuristic then

20: best gate ← g
21: heuristic ← h(g)
22: else

23: Set best gate ← g and

heuristic ← h(g) with probability

e(h(g)−heuristic)/temperature

24: end if

25: Remove g from the circuit
26: end for

27: if cost(circuit) + cost(best gate) > Cost then

28: break � This iteration failed

29: end if

30: Add best gate to the circuit
31: temperature ← temperature

−DECR1

32: if temperature ≤ 0 then

33: temperature ← temperature
+DECR1+ some Random value

34: end if

35: increment length loop by 1

36: end while

37: temperature ← temp − DECR2

38: if temperature ≤ 0 then

39: temperature ← temperature
+DECR2+ some Random value

40: end if

41: increment i by 1

42: end while

43: return the minimum cost circuit among all circuits in circuit list
44: end procedure

Fig. 1: Simulated Annealing Based Quine-McCluskey

where,

don′t care ratio = total number of don′t care terms
total length of all tables

one bit ratio = total number of one bit
total length of all tables

total length = total length of all tables

Hamming distance = Hamming distance of tout

B. Ant Colony Optimization

In this approach, the synthesis problem is considered as

exploring a DFS tree, in which every node at any particular

level corresponds to a particular gate. A pheromone and

heuristic is associated with each node. The root of the tree

is not associated with any gate, having 0 pheromone and

heuristic. Whenever the children of any node is explored for

the first time, the pheromones are initialized by a fixed value

INITIAL PHEROMONE and heuristics are calculated

by a procedure discussed in next subsection.

The algorithm starts with the input truth table and a blank

circuit. We will assume, we have n number of processors



available. Every time n number of ants are sent with an

initial length and cost constraints. After exploring each node

of the DFS tree, each ant invokes simulated annealing based

Quine-McCluskey method, updates the pheromone of the

node individually, and continues with the next level, until

length constraint is reached. If SA-QM returns a circuit, it

updates it’s own, as well as global length and cost constraints

for next n ants. It continues until all ants finish their journey.

Among all b2b−1 children of a particular node, the ant

reaches the tth child node gt with probability,

p(gt) =
pheromoneαt × heuristic

β
t∑b2b−1

i=1 pheromoneαi × heuristic
β
i

(2)

where pheromonei represents the pheromone level, and

heuristici represents the heuristic probability of the ith gate

node. After reaching the node, and adding the corresponding

gate, it invokes SA-QM, and updates the pheromone of gt
based on the result of SA-QM, as follows,

pheromonet = EV APORATION × pheromonet

+ new pheromone (3)

where,

new pheromone =

⎧⎨
⎩

1

min cost
, if SA-QM succeeds

0, if SA-QM fails
(4)

where in the first case, invoked SA-QM returns with a circuit

of cost min cost.

C. Heuristic Probability Determination of DFS Tree Node

The path from root to any node of the DFS tree represents

an unique circuit, e.g., the root represents blank circuit, the

node with gate g at level 1 represents a circuit with gate g

only. The heuristic probability used by ants while exploring

the children of some node is represented by the probability of

adding the next gate in the circuit after node.

Assume the result of applying the circuit c, on the truth table

tin be the truth table tout. We will first find out the probability

for each bit to be changed first in tout.

Assume that the input permutation of tout be

(i1, i2, i3, ..., i2n) and the output permutation be

(z1, z2, z3, ..., z2n), where tout is n × n truth table. Assume

for some k, 1 ≤ k ≤ 2n, where ik �= zk, ik and zk differs in

bk bit positions. So, ik can be changed to zk in bk! ways,

assuming no bit is changed more than once, as ik can be

changed to zk by changing the bk differing bits in any order.

Among these bk! ways, the number of ways in which any

particular bit, say tth bit is changed first, is,

w(t) =

{
(bk − 1)!, if tth bit is changed from ik to zk

0, otherwise

(5)

From the above discussion, we get the following immediate

lemma.

Lemma 1: For any initial permutation (i1, i2, i3, ..., i2n)
and final permutation (z1, z2, z3, ..., z2n), if j1, j2, ..., jm be

1: procedure ACO(Truth Table, Initial Cost,
Initial Length)

2: ant ← 0
3: cost ← Initial Cost
4: length ← Initial Length
5: circuit ← blank circuit
6: while ant ≤ NUMBER OF ANTS do

7: Send NO OF PROCESSORS of ants
in parallel.

8: node ← ROOT OF DFS
9: length loop ← 1

10: while length loop ≤ length do

11: if children of node are uninitialized then

12: initialize children of node.

13: end if

14: Select next node gt with

probability p(gt)
15: Add node.gate to circuit
16: if circuit solves Truth Table then

17: cost ← cost(circuit)
18: length ← length(circuit)
19: update pheromonet with

new pheromone ←
1

cost
20: break

21: end if

22: min circuit ← SA − QM
(Truth Table, circuit, cost, length)

23: if min circuit exists and

cost(min circuit) < cost then

24: cost ← cost(min circuit)
25: length ← length(min circuit)
26: update pheromonet with

new pheromone ←
1

cost
27: else

28: update pheromonet with

new pheromone ← 0
29: end if

30: length ← length − 1
31: length loop ← length loop + 1
32: end while

33: ant ← ant + NO OF PROCESSORS
34: end while

35: return min circuit
36: end procedure

Fig. 2: Ant Colony Optimization

the indices, for which ijk �= zjk , and at these indices the

permutations differ in b1, b2, ..., bm bit positions, then for any

bit t, the probability that the immediate next gate in the circuit

controls the tth bit is.

p(t) =
α1(b1 − 1)! + α2(b2 − 1)! + ...+ αm(bm − 1)!

b1! + b2! + ...+ bm!
(6)

where,

αk =

{
1, if tth bit is changed from ijk to zjk

0, otherwise
(7)

For an n × n truth table, the number of CNT gates having

control at any particular bit t is 2n−1. So, the probability of

next immediate gate g is
p(t)
2n−1 , where the gate g controls the

bit t.

IV. EXPERIMENTAL RESULT

We evaluated the proposed algorithm on several reversible

circuits by implementing the algorithm using Java on a 6-

core i7 (NO OF PROCESSORS = 6) machine with

8GB memory. For 3 × 3 circuits we used 1000 ants

(NO OF ANTS = 1000) and for 4 × 4 circuits we used



4000 ants (NO OF ANTS = 4000) for the ACO part. For

a n× n circuit, the initial length(Initial Length) is taken as

n2n−1, as observing a large amount of circuits, the following

hypothesis can be developed.

Hypothesis 1: For any n×n truth table, there exists at least

one circuit with maximum of n2n−1 gates, that can synthesize

the truth table.

In ACO, the initial cost(Initial Cost) is set as positive

infinity. While exploring any new node, the initial pheromone

(INITIAL PHEROMONE) is being taken as 0.8. The

probability parameters are taken as α = 0.5 and β =
0.5. The pheromone evaporation rate(EV APORATION ) is

being taken as 0.7. In the SA based QM method, we set

initial temperature(INITIAL TEMPERATURE) as 20.0,

number of iterations (ITERATION ) as 10, local tempera-

ture decrease rate (DECR1) as 0.4, and global temperature

decrease rate (DECR2) as 0.5. A proper tuning of these

parameters can further improve the result.

Table II shows the comparison with MOSAIC [6] and

PPRM [7] methods for several circuits. Though our algorithm

TABLE II: Gate Count comparison with MOSAIC and

PPRM methods for Benchmark Circuits

Function Name Functions
Gate Count

MOSAIC PPRM SA-QM and ACO

rand 3 1 [7,0,1,2,3,4,5,6] 3 3 3

rand 3 2 [0,1,2,3,4,6,5,7] 3 3 5

rand 3 3 [0,1,2,4,3,5,6,7] 7 5 6

rand 3 4 [1,2,3,4,5,6,7,0] 3 3 3

rand 3 5 [3,6,2,5,7,1,0,4] 8 7 8

rand 3 6 [1,2,7,5,6,3,0,4] 8 6 7

rand 3 7 [4,3,0,2,7,5,6,1] 6 7 7

rand 3 8 [7,5,2,4,6,1,0,3] 6 7 7

rand 3 9 [1,0,3,2,5,7,4,6] 4 4 5

rand 4 1 [13,1,14,0,9,2,15,6,12,8,11,3,4,5,7,10] 29 16 14

rand 4 2 [0,1,2,3,4,5,6,8,7,9,10,11,12,13,14,15] 9 7 10

rand 4 3 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0] 4 4 4

rand 4 4 [0,7,6,9,4,11,10,13,8,15,14,1,12,3,2,5] 4 4 4

rand 4 5 [6,2,14,13,3,11,10,7,0,5,8,1,15,12,4,9] 19 15 14

gives higher gate count for the function rand 4 2, but it gives

lower circuit cost of 38 over PPRM, which gives the circuit

of cost 51. The two figures 3 and 4 shows the comparison

bar graphs with MOSAIC and PPRM for 3 × 3 and 4 × 4
circuits respectively. As can be seen from the bar graphs,

3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9

4

6

8

10

12

Circuit

G
at

e
C

o
u
n
t

MOSAIC
PPRM

SA-QM and ACO

Fig. 3: Comparison Graph with MOSAIC and PPRM for 3×3
circuits

for most of the 3 × 3 circuits, our algorithm has generated

circuit with average gate count with MOSAIC and PPRM,

and for 4 × 4 circuits, our algorithm has generated circuits

with lower or equal gate count, except one case rand 4 2, in

4 1 4 2 4 3 4 4 4 5

5

10

15

20

25

30

Circuit

G
at

e
C

o
u
n
t

MOSAIC
PPRM

SA-QM and ACO

Fig. 4: Comparison Graph with MOSAIC and PPRM for 4×4
circuits

TABLE III: Cost Comparison with Revlib Benchmark

Circuits

Functions
Cost

Cost Increased
RevLib Minimum Cost SA-QM and ACO

ham 3 28 9 9 0%

3 17 6 14 14 0%

4 49 7 32 36 12.5%

hwb4 12 23 26 13%

which our cost is better, as discussed before. Table III shows

the cost comparison with 2 3×3 circuits ham 3 28 and 3 17 6,

and 2 4 × 4 circuits 4 49 7 and hwb4 12, with minimum

cost provided on the revlib website [8] of the corresponding

circuits.

V. CONCLUSION

Synthesis of reversible circuits has drawn the attention

of many researchers in recent years due to its promising

aspects in tomorrow’s lossless computing. In this work, an

algorithm has been proposed using Ant Colony Optimization

and Simulated Annealing based Quine-McCluskey approach

to synthesize a reversible circuit. This approach is producing

optimal or near optimal circuits for most of the cases. Major

advantage of this algorithm is that the constant factors of the

algorithm can be modified or tuned by the user to get better

result.

REFERENCES

[1] G. Moore, “Cramming more components onto integrated circuits,” Elec-

tronics, vol. 38, no. 8, Apr. 1965.
[2] R. Landauer, “Irreversibility and heat generation in the computing pro-

cess,” IBM J. Res. Develop., vol. 5, no. 3, pp. 183–191, July 1961.
[3] The International Technology Roadmap for Semiconductors. [Online].

Available: http://www.itrs.net/
[4] C. Bennett, “Logical reversibility of computation,” IBM J. Res. Develop.,

vol. 17, no. 6, pp. 525–532, Nov. 1973.
[5] A. Mishchenko and M. Perkowski, “Logic synthesis of reversible wave

cascades.” Proc. Int. Workshop Logic Synthesis, June 2002, pp. 197–202.
[6] M. S. Z. M. Saeedi and M. Sedighi, “Moving forward: A non-search based

synthesis method toward efficient cnot-based quantum circuit synthesis
algorithms.” ASPDAC, Jan. 2008, pp. 83–88.

[7] N. J. P. Gupta, A. Agrawal, “An algorithm for synthesis of reversible logic
circuits,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 25, pp. 2317–2330, Nov. 2006.
[8] An online resource for reversible benchmarks. [Online]. Available:

http://www.revlib.org/


