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Abstract—The design of Analog Mixed-Signal Systems-on-Chip
(AMS-SoCs) presents difficult challenges given the number of
design specifications that must be met. This situation is more
aggravating in the presence of process variation effects for
nanoscale technologies. Existing statistical techniques heavily rely
on Monte-Carlo analysis for design parameters in an effort to
mitigate the effects of process variation. Such methods, while
accurate are often expensive and require extensive amount of
simulations. In this paper we present a geostatistical based
metamodeling technique that can accurately take into account
process variation and considerably reduces the amount of time
for simulation. An illustration of the proposed technique is shown
using a 180nm PLL design. The proposed technique achieves an
accuracy of 0.7 % and 0.33% for power consumption and locking
time, respectively, and improves the run time by about 10 times.

Keywords-Geostatistics, Kriging, Universal Kriging, Analog
mixed-signal (AMS), PLL, Nano-CMOS, Process Variations

I. INTRODUCTION

Modern electronic designs have had analog content
increasingly integrated with digital components making
Analog/Mixed-Signal (AMS) designs ubiquitous. AMS de-
signs however present numerous challenges to design engi-
neers. Including familiar problems like efficient integration,
electrical and physical reconciliation (EPR), designers also
have to tackle the effects of process variation. As technology
scales deep into nanometer dimensions, the effects of process
variation have a dominating impact on performance behavior
of circuits, with analog circuits being more prone to these
effects [1], [2]. Due to systematic and random variations of
design parameters, circuit designs rarely meet design spec-
ifications and the yield is reduced. It is then important to
accommodate the effects of process variation early in the
design flow to efficiently mitigate its impact.

Existing techniques for process aware designs heavily rely
on Monte Carlo (MC) simulations and other statistical analysis
methods to design for worst case scenarios. Research has been
presented on such methods using MC and several variants [3],
[4]. Monte Carlo analysis generates multiple simulations of the
device while varying the design parameters such as transistor
width, transistor length, thickness oxide, and threshold voltage
with randomly generated parameter samples for analysis. The
inherent problem of Monte Carlo analysis is the large number
of simulation runs which can be very time consuming for
very large circuits. For example, a single simulation of a large

analog circuit on a CAD tool for a full blown parasitic netlist
could take several days to complete. The ever reducing time-
to-market makes this time cost infeasible. Different techniques
have been explored to mitigate the time costs for analysis.
These methods include hierarchical statistical analysis, sym-
bolic and regression based techniques [5], [3]. Regression
based techniques still require multiple simulations of the
analog circuit for building the models. The device performance
responses using sample points are used to build the model
that can be further used for Monte Carlo Analysis. However,
for analog designs in the deep nanometer regions, the error
due to process variation is significantly correlated between
design parameters, and regression based metamodels do not
efficiently capture these effects and hence do not provide an
accurate fit across the local and global design space [6].

This paper presents a geostatistical based metamodeling
technique that uses universal Kriging prediction in building
AMS design metamodels. Kriging prediction techniques were
originally introduced and used in the geostatistics field for
modelings [7], [8], [9] and recently in integrated circuit
metamodeling [10], [11], [12]. The Kriging based performance
prediction techniques use a combination of regression based
methods that model the error correlation between design
parameters and a stochastic component that aims to neutralize
the deterministic nature of computer simulations. We propose
Kriging based metamodels since they inherently provide a
more statistically accurate analysis for process variation. A
180nm PLL design is also presented to demonstrate the
efficiency of Kriging.

The rest of this paper is organized as follows: The universal
Kriging metamodeling of the PLL is presented in Section
II while the process variation aware analysis is presented in
Section III. Experimental results are presented in Section IV
and Section V contains conclusions and future research.

II. GEOSTATICS BASED METAMODELING OF A PLL

In this section we present geostatistical based metamodeling
that uses “Universal Kriging” for performance prediction. A
brief overview of Kriging based metamodeling is given.

A. PLL:Case Study Circuit

The phase locked loop (PLL) which is a closed feedback
loop circuit system is an ideal circuit for this study and is an
excellent example of mixed-signal design. It is widely used in



many AMS-SoCs including processors, Field-Programmable
Gate Arrays (FPGAs) and in telecommunication applications.
The major components of the PLL are the phase detector,
charge pump, voltage controlled oscillator (VCO) and fre-
quency divider. A system diagram is shown in Fig. 1.
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Fig. 1. High level system diagram of a PLL.

In a PLL, the phase detector detects the phase difference
of the signals from the reference clock and closed loop. A
difference in phase causes the charge pump to supply charge
with proportion to error detected. The signal is filtered and
used to control the VCO which produces the output phase
to lock in with the reference clock. The divider is used to
make the output signal a multiple of the reference clock where
desired. The physical layout design of the baseline 180nm
design is shown in Fig. 2.
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Fig. 2. Physical layout design of the 180nm PLL.

The PLL was characterized for power consumption, fre-
quency output and locking time. The design objective is the
minimization of power consumption using the locking time as
optimization cost and 21 design parameters as variables.

B. Universal Kriging Based Metamodeling
Kriging techniques were originally used for geostatistical

research and have been extended to other fields [7], [8], [9] and

even VLSI design [10], [11], [12]. The application of Kriging
for metamodeling was proposed in [13] as a combination of
polynomial regression with a stochastic approach to mitigate
the deterministic nature of computer experiments. The basic
expression of Kriging is of the form:

y(x0) =

L∑
j=1

λjBj(x) + z(x), (1)

where y(x0) is a stochastic function which predicts the
response at the design point (x0). {Bj(x), j = 1, · · · , L}
is a specific set of basic functions over the design domain
DN , λj are fitting coefficients (also known as weights) to
be determined based on the Kriging method applied. z(x) is
a stochastic process with zero mean and based on a spatial
correlation function. The weights, λj used in Kriging are a
function of the correlation between the set of sampled data
points to be used for prediction and the response points to be
predicted. This feature ensures the weighting average of each
predicted performance point is unique.

Kriging takes into account the autocorrelation between de-
sign parameters and is characterized by the covariance function
[14]. The correlation function, usually called the variogram,
is expressed as follows:

r(s, t) = Corr(z(s), z(t)). (2)

The weights are chosen so that the Kriging variance is min-
imized [15], [7]. The weight selection technique can be varied
to fine tune the result. Popular Kriging methods include the
simple, ordinary and universal methods. Simple and ordinary
Kriging assume a constant mean in the local domain of the
predicted point, whereas universal Kriging method assumes
the mean as a deterministic function. This work explores
universal Kriging for the metamodeling of the PLL circuit.

Assuming there are n sampled points the of variable x, to
predict a new point y(x0), the weights λ are estimated by the
following: 

λ1
...
λn
µ

 = Γ−1


γ(x1, x0)

...
γ(xn, x0)

1

 , (3)

Γ is the covariance matrix of the observed points and is given
by the following expression:

Γ =


γ(x1, x1) · · · γ(x1, xn) 1

...
. . .

... 1
γ(xn, x1) · · · γ(xn, xn) 1

1 1 1 0

 , (4)

where the variogram is calculated as follows:

γ(x1, x2) = E
(
|z(x1)− z(x2)|2

)
. (5)

The estimation of the variogram is obtained by fitting to
some empirical autocorrelation functions. A few examples that
are commonly used include the linear, exponential, Gaussian



and spherical models [13]. The Gaussian model is expressed
as follows:

γ(h) = C0

(
1− exp

(
− h2

r2a

))
, (6)

where C0, C and a are shape parameters.
For the performance output of the power consumption of the

PLL, which is analyzed in this work, the generated metamodel
will be of the form:

Ẑ(wn0) =

L∑
j=1

λjBj(wn) + z(wn), (7)

where P̂PLL(Wn0) is the predicted power consumption at
design point Wn0. The Kriging metamodel functions are
generated using the MATLAB toolbox mGstat [16]. The sam-
ple points are generated using the Latin Hypercube Sampling
(LHS) technique. LHS is more effective in capturing the entire
design space thus improving the variance over Monte Carlo
distributions [17]. A comparison of sampling techniques shows
that metamodels generated using LHS techniques are more
accurate than random sampling techniques.

III. PROCESS VARIATION AWARE STATISTICAL
METAMODEL GENERATION

Conventional methods for process variation aware design
analysis involve Monte Carlo simulations on the circuit design
netlist for process variation verification. This process expends
considerable time costs. The statistical method proposed in-
volves running the statistical analysis on the Kriging metamod-
els instead. The Kriging metamodels have an advantage over
similar methods using metamodels as they are more accurate
and have a better efficiency of capturing the error correlation
between design parameters thus making them more suitable
for modeling the effects of process variation. The stochastic
component of Kriging based techniques also compensates for
the stochastic nature of computer simulations on which most
design analysis are run on.

In creating the Kriging metamodel, the design parameters
that are most sensitive to the performance outputs are used to
ensure a robust model. The design parameters used were the
transistor width and channel length of each component of the
PLL. As technology scales deeper into the nanometer region,
the transistor length also contributes to the threshold voltage
variation. The transistor oxide thickness Tox for both NMOS
and PMOS transistors as well as the threshold voltage (Vth)
are also included. In total, 21 design and process parameters
were used for the device sampling. The parasitic netlist is
parameterized to enable multiple simulations controlled by a
scripting language.

For each performance output a different Kriging metamodel
is generated. These process variation aware metamodels are
then further used for statistical yield analysis. A comparison
of the statistical analysis from the proposed model is compared
to analysis from the extracted circuit netlist.

IV. EXPERIMENTAL RESULTS

The 180nm PLL circuit described in section II-A was used
for the experimental analysis of this work. The full blown
RLCK parasitic netlist was extracted from the physical design
layout and used for device sampling and simulation for silicon
aware accuracy. A Monte Carlo analysis of 1000 simulation
runs was performed for comparison to the statistical model
proposed in this work. The Monte Carlo simulations were
configured for process and mismatch variations. The physical
design and Monte Carlo simulations were performed using the
CADENCE Virtuoso environment. The performance outputs
characterized are the power consumption (PPLL), and the
locking time (LockPLL). The process variation analysis is per-
formed on the universal Kriging metamodel using MATLAB.

The results of the proposed statistical model are charac-
terized by the histogram plots shown in Figure 3. The plots
show the PDF for both the power consumption of the PLL and
the locking time. The x-axis for Figure 3(a) shows the power
and the y-axis shows the frequency of outputs. Similarly,
Figure 3(b) shows the locking time and frequency of outputs
respectively. The distribution for both plots is Gaussian as
expected from the nature of random process variation modeled.

Table I shows the tabulated statistical analysis for the mean
(µ) and standard deviation (σ) of the power consumption and
locking time of the PLL in comparison to the values from the
actual netlist. The mean value of the predicted power output
is 0.871 mW compared to 0.877 from the actual netlist Monte
Carlo analysis with a 0.7 % error. The predicted locking time is
3.23 µs compared to 3.24 µs with a 0.31 % error. The accuracy
of these results validates the proposed statistical model which
can be used for analysis while reducing the amount of time
required for the conventional Monte Carlo analysis. This is
a significant improvement of time costs for analysis. The
simulation time for the Monte Carlo analysis on the actual
netlist is about 5 days while the Kriging metamodel generation
and analysis takes only a few hours.

To demonstrate the improvement of Kriging over behavioral
modeling used for analysis, the results from selected works are
compared to this work in Table II.

V. CONCLUSION

This paper presented a Kriging based statistical model for
process variation aware analysis of analog mixed signal circuit
designs. The proposed model with the inherent characteris-
tic of Kriging prediction techniques takes into account the
correlation between design parameters in process variation.
Simulation and analysis results shows that the model com-
pares well to conventional but time exhausting Monte Carlo
methods. It achieves a mean error of 0.7 % and 0.33 % for
the statistical analysis of the power consumption and locking
time compared to the Monte Carlo control but speeds up the
simulation process by approximately 10 times. This proves
that the proposed method minimizes the statistical error while
improving the simulation time considerably.



TABLE I
STATISTICAL ANALYSIS FOR ACCURACY OF KRIGING GENERATED METAMODEL FOR PLL POWER CONSUMPTION

Mean (µ) Standard Deviation (σ)
Circuit Kriging Error Circuit Kriging Error

PPLL 0.877 mW 0.871 mW 0.7 % 0.073 mW 0.072 mW 1.4 %
LockPLL 3.24 µs 3.23 µs 0.31 % 1.07 µs 0.33 µs 69.16 %

TABLE II
STATISTICAL ANALYSIS FOR ACCURACY OF KRIGING GENERATED METAMODEL FOR PLL POWER CONSUMPTION

Research Technique Power Locking Time
Mean Error Mean Error

[3] Quasi-SA - - 3.45 2.2 %
[18] ANN 0.90 mW 0.14 % 3.22 µs 0.7 %
[This Paper] Kriging 0.87 mW 0.7 % 3.23 µs 0.33 %
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Fig. 3. Statistical analysis of the performance output for the 180nm PLL
using Kriging metamodels.

REFERENCES

[1] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
“Parameter Variations and Impact on Circuits and Microarchitecture,” in
Proceedings Design Automation Conference, 2003, pp. 338–342.

[2] K. Bowman, S. Duvall, and J. Meindl, “Impact of Die-to-Die and
Within-Die Parameter Fluctuations on the Maximum Clock Frequency
Distribution for Gigascale Integration,” IEEE Journal of Solid-State
Circuits, vol. 37, no. 2, pp. 183–190, Feb. 2002.

[3] C.-C. Kuo, M.-J. Lee, C. N. J. Liu, and C.-J. Huang, “Fast Statistical
Analysis of Process Variation Effects Using Accurate PLL Behavioral
Models,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 56, no. 6, pp. 1160–1172, June 2008.

[4] D. Ghai, S. Mohanty, and E. Kougianos, “Design of Parasitic and
Process-Variation Aware Nano-CMOS RF Circuits: A VCO Case Study,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 17, no. 9, pp. 1339–1342, Sept. 2009.

[5] E. Felt, S. Zanella, C. Guardiani, and A. Sangiovanni-Vincentelli,
“Hierarchical Statistical Characterization of Mixed-Signal Circuits Using
Behavioral Modeling,” in Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, Nov 1996, pp. 374–380.

[6] W. E. Biles, J. P. C. Kleijnen, W. C. M. van Beers, and I. van Nieuwen-
huyse, “Kriging Metamodeling in Constrained Simulation Optimization:
An Explorative Study,” in Proceedings of the 39th Winter Simulation
Conference, 2007, pp. 355–362.

[7] W. Van Beers, “Kriging Metamodeling in Discrete-Event Simulation: An
Overview,” in Proceedings of the Winter Simulation Conference, 2005,
pp. 202–208.

[8] M. Zakerifar, W. Biles, and G. Evans, “Kriging Metamodeling in
Multi-objective Simulation Optimization,” in Proceedings of the Winter
Simulation Conference (WSC), 2009, pp. 2115–2122.

[9] B. Harrington, Y. Huang, J. Yang, and X. Li, “Energy-Efficient Map
Interpolation for Sensor Fields Using Kriging,” IEEE Transactions on
Mobile Computing, vol. 8, no. 5, pp. 622–635, May 2009.

[10] G. Yu and P. Li, “Yield-Aware Analog Integrated Circuit Optimization
Using Geostatistics Motivated Performance Modeling,” in Proceedings
of the IEEE/ACM International Conference on Computer-Aided Design,
Nov. 2007, pp. 464–469.

[11] H. You, M. Yang, D. Wang, and X. Jia, “Kriging Model Combined with
Latin Hypercube Sampling for Surrogate Modeling of Analog Integrated
Circuit Performance,” in Proceedings of the International Symposium on
Quality of Electronic Design, 2009, pp. 554–558.

[12] O. Okobiah, S. P. Mohanty, E. Kougianos, and O. Garitselov, “Kriging-
Assisted Ultra-Fast Simulated-Annealing Optimization of a Clamped
Bitline Sense Amplifier,” Proceedings of the International Conference
on VLSI Design, pp. 310–315, 2012.

[13] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn., “Design and
Analysis of Computer Experiments.” Statistical Science,, vol. 4, no. 4,
pp. 409–423, 1989.

[14] G. Bohling, “Kriging,” Kansas Geological Survey, Tech. Rep., 2005.
[15] N. A. C. Cressie, Statistics for Spatial Data. New York: Wiley, 1993.
[16] mGstat: A Geostatistical MATLAB Toolbox. [Online]. Available:

mgstat.sourcefourge.net
[17] R. L. K.-T. Fang and A. Sudjianto, Design and Modeling for Computer

Experiments. 6000 Broken Sound Parkway NW, Suite 300 Boca Ration,
FL, 33487: Chapman and Hall/CRC, 2006, no. 4.

[18] O. Garitselov, S. P. Mohanty, E. Kougianos, and G. Zheng, “Particle
Swarm Optimization over Non-Polynomial Metamodels for Fast Process
Variation Resilient Design of Nano-CMOS PLL,” in Proceedings of the
great lakes symposium on VLSI.


