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Abstract— The mature electronic design automation (EDA)
tools and well-defined abstraction-levels for digital circuits have
almost automated the digital design process. However, analog
circuit design and optimization is still not automated. Custom
design of analog circuits and slow analog in SPICE has always
needed maximum efforts, skills, design cycle time. This paper
presents a novel design flow for constrained optimization ofnano-
CMOS analog circuits. The proposed analog design flow combines
polynomial-regression based models and genetic algorithmfor
fast optimization. For evaluating the effectiveness of theproposed
design flow, power minimization in a 50nm CMOS based current-
starved voltage-controlled oscillator (VCO) is carried out, while
treating oscillation frequency as a performance constraint. Accu-
rate polynomial-regression based models are developed forpower
and frequency of the VCO. The goodness-of-fit of the models is
evaluated usingSSE, RMSE and R

2. Using these models, we
form a constrained optimization problem which is solved using
genetic algorithm. The flow achieved21.67% power savings, with
a constraint of frequency≥ 100 MHz. To the best of the authors’
knowledge, this is the first study which approaches a VCO design
problem as a mathematical constrained optimization involving
the usage of regression based modeling and genetic algorithm.

I. I NTRODUCTION AND CONTRIBUTIONS

Digital design exploration and optimization has been largely
automated due to availability of large number of electronic
design automation (EDA) or computer-aided design (CAD)
tools. This is also aided by the availability of well-defined
abstractions for digital circuits (such as system, architecture,
and logic levels). However, automatic design optimizationof
analog circuits is still a difficult and time intensive process [1].
For example, the analog simulation time for a nano-CMOS
phase-locked loop is a matter of several days. So, debugging
such a design is time intensive and costly. This results in high-
cost and longer design cycle time. If such analog design are
performed at nano-CMOS technology, the issues are further
complicated and result in yield loss.

Modern analog integrated circuit (IC) optimization prob-
lems are highly complicated and involve minimizing a cost
function subject to certain constraints. Multivariant technique
is implemented to understand constrained optimization in this
research. In most analog design situations, a designer must

make trade-offs between conflicting behavioral requirements,
dealing with functions that are often non-linear [2], such as
power consumption and frequency of a VCO [3]. Circuit
designers need novel design/optimization flows [4]. Optimiz-
ing two or more design objectives while subjecting design
variables or performance metrics to constraints is the aim
of multi-objective optimization [5], [6]. The trade-offs and
sensitivity analysis between the different objectives canbe
explored by multi-objective optimization. During optimization,
the baseline circuit is iteratively tuned by adjusting a large
number of design parameters to vast amounts of different
design possibilities of the same circuit to meet the target
design functions. This makes it very tedious to do exhaustive
design space exploration for complex nano-CMOS circuits.
Further, this situation is aggravated by the use of compact
SPICE models [7] with hundreds of parameters in nano-CMOS
technology. Multiobjective optimization problems [8], [9] can
be found wherever optimal decisions need to be taken in
the presence of trade-offs between two or more conflicting
objectives.

Polynomial regression model is an abstracted model of the
netlist which enables a fast design space search [10], [11].
Authors have explored support vector machines (SVM)-based
regression modeling in [12]. Polynomial regression modelsare
useful for relative functions to unknown and very complex
nonlinear relationship. This model is a mathematical predictive
equation which may be used as a substitute for the actual
circuit, leading to easier and faster simulations with multiple
iterations during optimization. Hence, it can be used as an
alternative to the exhaustive search of the actual circuitsdesign
space. The model can also be used in a variety of tools, such
as MATLAB, and is language independent and can be used in
a flexible fashion.

The novel contributions of this paper are as follows:
1) A novel fast design flow for multiobjective constrained

optimization in nano-CMOS analog circuits is proposed.
The speed up in design flow is achieved by the use
of polynomial regression models and genetic algorithm
based optimization.



2) A method for polynomial regression based modeling has
been proposed for analog circuits. The goodness-of-fit
of the polynomial regression models is measured using
SSE, RMSE andR2.

3) A genetic algorithm based optimization approach is
presented that considers power consumption as objective
and frequency as constraint for a VCO design.

4) A 50 nm CMOS based current starved VCO is subjected
to the proposed design methodology. We report21.67%
power savings and frequency≥ 100 MHz in the VCO.

The notations and definitions for various terminologies used
in this paper are given in Table I. To give an overview, the pa-
per is organized in following manner: Section II discusses the
proposed flow. The design of the VCO and regression based
models are discussed in section III. Section IV highlights
the formation and solution of the constrained optimization
step of the flow using genetic algorithm. This is followed by
conclusions and future research in section V.

TABLE I

NOTATION AND ACRONYMS USED IN THISPAPER

VDD : supply voltage of nano-CMOS circuit
Vin : input voltage to nano-CMOS circuit
Vout : output voltage to nano-CMOS circuit
Wp : width of the PMOS transistor
Wn : width of the NMOS transistor
PowerV CO : power consumption of VCO
FrequencyV CO : frequency of VCO
g(x) : cost function
h(x) : non-linear inequality constraint
SSE : Sum of squared error
RMSE : Root of Mean Square Error
R2 : Coefficient of Determination
GA : Genetic Algorithm

II. PROPOSEDDESIGN OPTIMIZATION FLOW FOR

NANO-CMOS VCO

This section presents the proposed flow for constrained
optimization in nano-CMOS based analog circuits. Although,
a VCO is used as an example circuit in this case study for
reducing power consumption, and increasing frequency, the
optimization flow can be generalized for other nano-CMOS
analog circuits (like operational amplifiers, filters, sense am-
plifiers, etc.) as well.

The input to the proposed design flow is a baseline design
of circuit. This is one time manual design step. At this stagea
netlist is sufficient for the design flow. For a schematic design
this netlist will have only active devices whereas for a layout
design full-blown parasitics (RCLK) is included. In this paper,
we have used a 50 nm CMOS based VCO. A baseline design
is carried out as per the specifications. The design objectives
and constraints are identified and measured for this baseline
VCO (power and frequency). In order to collect data for
building the regression-based models, exhaustive simulations
are performed to obtain the sample data points in the space
defined by the bounded design variables. For this study, we
consider 2 design variables i.e.Wp: width of the PMOS
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Fig. 1. Proposed optimization flow.



transistors, andWn: width of the NMOS transistors in the
current starved VCO. Thereafter, a polynomial regression
based model is developed for each design objective (i.e. power
and frequency) using these sample data points. Polynomial
regression is efficient, reliable and allows for very fast design
exploration [13] in a smaller design space (like 2 design
variables in this paper). But it is not efficient for very high
dimensional circuits (many parameters) due to the number
of coefficients limited by memory space. Other modeling
techniques, like pareto surfaces [14] also suffer from the
curse of dimensionality. In order to accommodate a larger
design space with a higher number of variables, we may
use techniques such as neural networks [15], support vector
machines based regression [12], kriging [16] in the proposed
design flow instead of polynomial regression.

At this stage of the design flow, the analog circuit design
problem is formulated as a constrained optimization problem.
For an example the following:

minimize
x

g(x)

subject to h(x) ≤ 0,

XL < x < XH .

(1)

Whereg(x) is the cost function to be minimized and the vector
h(x) is the non-linear inequality constraint. Vectorx corre-
sponds to the design variable set (x= [Wn,Wp]

T ), and XL

andXH are their lower and upper bounds, respectively.g(x)
andh(x) are formed using the models, which are developed
in the regression step of the flow. We have considered power
of the VCO as the design objective and frequency of the VCO
as the design constraint. However, other VCO specifications
like phase noise and tuning linearity may also be consideredin
the set of design objectives:g(x) or design constraints:h(x).
Cost function, constraints and bounds are formed for design
variables which are the inputs to the optimization algorithm.
This constrained optimization formulation is then fed to the
optimization algorithm.

A number of global optimization algorithms are available
in current literature for optimization of analog circuits,i.e.
genetic algorithm [8], simulated annealing [16], particle-
swarm optimization [17], bee-colony optimization [18]. These
algorithms are particularly effective in finding global optimal
or near-optimal solutions, as compared to local optimization
techniques like conjugate-gradient [19] and derivative-based
methods [13]. Convex Optimization has been explored in [20]
where circuit designs are expressed as posynomial models. We
have used the genetic algorithm (GA) to solve our optimization
problem, as it is easily transferred to existing simulations and
models. Also, GA can handle arbitrary constraints and objec-
tives unlike other commonly used optimization methodologies.
The output of the algorithm is the optimal values of the
design variables. The circuit is then re-simulated using these
design variable values for obtaining the design objectives. For
example, power and frequency for the VCO.

III. D ESIGN AND MODELING OF 50nm
CURRENT-STARVED VCO

The circuit diagram for baseline 50nm current-starved VCO
is shown in figure 2. The supply voltage (VDD) has been
kept at 1 V. An inverter is formed by the devices P1 and
N1. The current sources, formed by P2 and N2, limit the
current available to the inverter (P1 and N1). So, the inverter
is starved for current. The input voltage sets the drain currents
in the devices P11 and N11. The currents in P11 and N11 are
mirrored in each inverter/current source stage.

The oscillation frequency of the current-starved VCO is
given by equation 2 [6].

FrequencyV CO =
ID

n× Ctot × VDD

. (2)

Where ID=drain current,n=number of stages,Ctot=total
capacitance on the drains of P1 and N1, andVDD=supply
voltage. We have chosenn=21, ID=10µA and Ctot=4.7 fF

for a target frequency of 100 MHz. The average power
consumption by the VCO is given by the following expression:

PowerV CO = Pdynamic+ Psubthreshold+ Pgate-oxide (3)
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WhereC =
(

µ0 ×
(

ǫoxW
ToxLeff

)

× v2therm × e1.8
)

, Tox is the
oxide thickness,φox is the barrier height for the tunneling
particle (hole or electron), andα andβ are physical parameters
used in modeling.

For developing models for PowerV CO and FrequencyV CO

as function of the design variable setx=[Wp,Wn]
T , a

quadratic polynomial regression (order=2) is applied. The
polynomial regression model is expressed as follows:

f(x) =

2
∑

i,j=0

pij × x(1)i × x(2)j . (5)

Wherex(1)=Wn, x(2)=Wp, f(x) may befreq or pwr andpij
is the matrix of coefficients obtained by polynomial regression.

A. Polynomial Regression Modeling of VCO Power

The design space is explored through parametric simulations
for the values ofWn andWp ranging from the lower bounded
constraint (100nm) to upper bounded constraint (1µm) and the
data points are used to obtain least squares fit polynomial as
in equation (5). The coefficient matrix obtained as in equation
6. Figure 3 shows the corresponding surface plot.

pij(pwr) =

[

5.4× 10
−5

6.8× 10
−6

−1.3× 10
−6

6.6× 10
−6

2.7× 10
−6

0

−1.2× 10
−6

0 0

]

(6)
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Fig. 2. Logical diagram for VCO with transistor sizes for 50 nm CMOS based baseline design.
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Fig. 3. Surface plot for power consumption of VCO.

We analyze the sum of squared error (SSE), Root of Mean
Square Error (RMSE) and coefficient of determination (R2)
[11] as measures of goodness of fit for the polynomial re-
gression model. SSE is a measure of the discrepancy between
the data and an estimation model. If the estimation model is
well fitted, it results in predictive data values close to observed
values. A small SSE indicates a tight fit of the model to the

data. Equation 7 shows the formula used for calculating SSE.

SSE =

N
∑

i=0

(f(xi)− f̂(xi))
2. (7)

Where N=1000 are uniformly distributed points of the pa-
rameters selected in the design domain (x). We report an
SSE of 56.55pW.f(xi) and f̂(xi) are the responses at point
(xi) of the data point observations and the regression based
model, respectively. One way to calculate RMSE is obtained
by substituting equation 7 in equation 8. Alternatively, RMSE
is shown in equation 9.

RMSE =

√

SSE

N
(8)

=

√

√

√

√

1

N

N
∑

i=0

(f(xi)− f̂(xi))2. (9)

The RMSE estimates the difference between the observed data
points from simulations and the polynomial regression model.
A smaller RMSE value indicates an accurate polynomial
regression model [11]. We report an RMSE of 0.2378µW for
the power model.

The coefficient of determination (R2) measures the propor-
tion of the variation of the data point observations around
the mean that is explained by the fitted regression model.
Advantage of usingR2 is that its scale is intuitive, and an
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Fig. 4. Surface plot for oscillating frequency of the VCO.

improvement in the regression model results in proportional
increase inR2. The closerR2 is to 1, the greater the degree
of association between variablesx and the response. Equation
10 is used for measuringR2.

R2 = 1−

∑N

i=0
(f(xi)− f̂(xi))

2

∑N

i=0
(f(xi)− f(xi))2

. (10)

Wheref(xi) is the mean of the response at point (xi) of the
data point observations. We report anR2 value of 0.9943 for
the power model.

B. Polynomial Regression Modeling of VCO Frequency

Equation 11 shows the coefficient matrix obtained for the
frequency model. The corresponding surface plot for oscillat-
ing frequency is shown in figure 4 .

pij(freq) =

[

1.10 × 10
8

1.61× 10
7

−1.02× 10
7

1.17 × 10
7

8.57× 10
6

0

−8.41 × 10
6

0 0

]

(11)

The goodness of fit is measured using SSE, RMSE andR2

described in equations 7, 8 and 10, respectively. SSE of 4.76
× 1015 Hz, RMSE of 2.184 MHz andR2 of 0.9953 is reported
for the frequency model.

IV. CONSTRAINED OPTIMIZATION OF VCO USING

GENETIC ALGORITHM (GA)

This section discusses the development of the cost function,
constraint function and Genetic Algorithm (GA) used for op-
timization. We formulate the optimization problem as follows:

minimize PowerV CO

such that FrequencyV CO ≥ 100MHz,

100nm ≤ [Wp,Wn]
T ≤ 1µm. (12)

In order to make equation 12 the same format as equation 1,
we formulate the optimization problem as follows:

minimize g(x) = PowerV CO

such that 100× 106 − FrequencyV CO ≤ 0,

100nm ≤ x ≤ 1µm. (13)

Where cost function isg(x)=PowerV CO and constraint func-
tion ish(x) = 100×106-FrequencyV CO. The lower and upper
bounds for the design variable setx = [Wp,Wn]

T are 100nm
and 1µm respectively. The cost function is minimized through
a Genetic Algorithm.

The Genetic Algorithm has an advantage over most of
other techniques presented in current literature as it helps
in formulating the problem as a nonlinear optimization with
equality and inequality constraints [21]. Algorithm 1 shows
the pseudocode for GA applied to VCO. The inputs to the
algorithm are the cost functiong(x), the non-linear inequality
constraint functionh(x) and the lower (XL) and upper (XH)
bounds to the design solution setx. New candidates (children)
for the design solution set are generated with a mechanism
called crossover (rate=0.8) which combines part of the genetic
material of each parentx′ and then applies a random mutation.
If the childx′

child inherits good characteristics from its parents
x′, it will have a higher probability to survive. The values of
child x′

child are stored in the set of childrenx′′. The fitness of
the childx′′and parentx′ population is then evaluated using
g(x), h(x) and the survivors can be formed either by the fittest
from x′′ ∪ the fittest fromx′.

Genetic Algorithm first accepts a set of design solution
set (statements 6 and 7 in algorithm 1), and then constructs
a set of child design solution set (statements 9 to 15 in
algorithm 1). The stopping criterion is provided by the number
of generations (maxgen). Table II shows the final design
solution set obtained from proposed Genetic Algorithm based
optimization.

TABLE II

COMPARISON OF OBJECTIVES IN BASELINE AND OPTIMIZEDVCO.

Design Wp Wn PowerV CO FrequencyV CO

Baseline 1µm 500nm 60µW 111.4 MHz
Optimized 482nm 434nm 47µW 105.4 MHz

V. CONCLUSIONS ANDFUTURE RESEARCH

A polynomial regression model assisted constrained multi-
objective optimization has been carried out on a 50nm VCO
for simultaneous frequency and power optimization. A model-
based approach is beneficial as it is faster than optimizing the
actual circuit. The proposed approach leads to 21.67% power
reduction and a frequency≥ 100 MHz is maintained. As part
of future research, regression based models will be developed,
taking into account supply sensitivity, temperature sensitivity
and parasitics. VCO performance parameters other than power
and frequency, such as phase noise, tuning linearity will also



Algorithm 1 Proposed Genetic Algorithm (GA) for VCO Optimization.

1: Input: Cost functiong(x), constraint functionh(x), 100nm≤ x ≤ 1µm and design solution setx.
2: Output: Optimal design solutionxopt.
3: Generate initial population design variablex.
4: Initialize the number of iterations, gen=0.
5: while gen< maxgen-1do
6: Select mating pool from the initial population asx′ ⊂ x.
7: Initialize set of childrenx′′= ∅.
8: for i=0 to populationsize-1do
9: Select individualsx′

a at random fromx′.
10: Apply crossover tox′

a to produce childx′

child.
11: Randomly mutate produced childx′

child.
12: x′′=x′′ ∪ x′

child.
13: end for
14: x′′′=x′′ ∪ x′.
15: Evaluate fitness usingg(x′′′), h(x′′′) .
16: Increment the counter as gen=gen+1.
17: end while
18: The optimal solution is obtained:xopt=x′′′.
19: Assignxopt to transistors in VCO and recreate the design using the new parameters.
20: Re-simulate VCO to characterize forfreq andpwr.

be considered. Also, the constrained optimization problem
presented in this paper will solved using other algorithms such
as the Lagrange multiplier method and artificial bee colony.
The effects of process variation will be incorporated in future
statistical design flows.
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