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Abstract— The mature electronic design automation (EDA)
tools and well-defined abstraction-levels for digital cirwits have
almost automated the digital design process. However, arag
circuit design and optimization is still not automated. Cusom
design of analog circuits and slow analog in SPICE has always
needed maximum efforts, skills, design cycle time. This pagy
presents a novel design flow for constrained optimization afiano-
CMOS analog circuits. The proposed analog design flow combéas
polynomial-regression based models and genetic algorithnfor
fast optimization. For evaluating the effectiveness of th@roposed
design flow, power minimization in a 50nm CMOS based current-
starved voltage-controlled oscillator (VCO) is carried ou, while
treating oscillation frequency as a performance constrait Accu-
rate polynomial-regression based models are developed fpower
and frequency of the VCO. The goodness-of-fit of the models is
evaluated usingSSE, RMSE and R?. Using these models, we
form a constrained optimization problem which is solved uang
genetic algorithm. The flow achieved21.67% power savings, with
a constraint of frequency > 100 MHz. To the best of the authors’
knowledge, this is the first study which approaches a VCO degn
problem as a mathematical constrained optimization involing
the usage of regression based modeling and genetic algonith

I. INTRODUCTION AND CONTRIBUTIONS

make trade-offs between conflicting behavioral requireisien
dealing with functions that are often non-linear [2], such a
power consumption and frequency of a VCO [3]. Circuit
designers need novel design/optimization flows [4]. Optimi
ing two or more design objectives while subjecting design
variables or performance metrics to constraints is the aim
of multi-objective optimization [5], [6]. The trade-offsnd
sensitivity analysis between the different objectives ten
explored by multi-objective optimization. During optiraizon,
the baseline circuit is iteratively tuned by adjusting agéar
number of design parameters to vast amounts of different
design possibilities of the same circuit to meet the target
design functions. This makes it very tedious to do exhaestiv
design space exploration for complex nano-CMOS circuits.
Further, this situation is aggravated by the use of compact
SPICE models [7] with hundreds of parameters in nano-CMOS
technology. Multiobjective optimization problems [8],][€@an
be found wherever optimal decisions need to be taken in
the presence of trade-offs between two or more conflicting
objectives.

Polynomial regression model is an abstracted model of the

Digital design exploration and optimization has been IBrgenetlist which enables a fast design space search [10], [11].
automated due to availability of large number of electroni&uthors have explored support vector machines (SVM)-based
design automation (EDA) or computer-aided design (CADggression modeling in [12]. Polynomial regression modeds
tools. This is also aided by the availability of well-definediseful for relative functions to unknown and very complex

abstractions for digital circuits (such as system, archute,

nonlinear relationship. This model is a mathematical ftack

and logic levels). However, automatic design optimizatén equation which may be used as a substitute for the actual

analog circuits is still a difficult and time intensive prasd1].

circuit, leading to easier and faster simulations with ipigt

For example, the analog simulation time for a nano-CMOi&rations during optimization. Hence, it can be used as an
phase-locked loop is a matter of several days. So, debuggaiternative to the exhaustive search of the actual circigisign
such a design is time intensive and costly. This resultsgh-hi space. The model can also be used in a variety of tools, such
cost and longer design cycle time. If such analog design axe MATLAB, and is language independent and can be used in
performed at nano-CMOS technology, the issues are furtleeflexible fashion.

complicated and result in yield loss.

The novel contributions of this paper are as follows:

Modern analog integrated circuit (IC) optimization prob- 1) A novel fast design flow for multiobjective constrained

lems are highly complicated and involve minimizing a cost
function subject to certain constraints. Multivariantheigue
is implemented to understand constrained optimizatiomis t

optimization in nano-CMOS analog circuits is proposed.
The speed up in design flow is achieved by the use
of polynomial regression models and genetic algorithm

research. In most analog design situations, a designer must based optimization.



2) A method for polynomial regression based modeling has S
been proposed for analog circuits. The goodness-of-fit tart

of the polynomial regression models is measured using
SSE, RMSE and R?.

3) A genetic algorithm based optimization approach is
presented that considers power consumption as objective
and frequency as constraint for a VCO design.

4) A 50 nm CMOS based current starved VCO is subjected
to the proposed design methodology. We reRar67%
power savings and frequengy 100 MHz in the VCO.

The notations and definitions for various terminologiesiuse

in this paper are given in Table I. To give an overview, the pa-
per is organized in following manner: Section Il discusses t

proposed flow. The design of the VCO and regression basec
models are discussed in section Ill. Section IV highlights Identify design
the formation and_solutlon _of the _constral_ne_d optimization objectives and constraints
step of the flow using genetic algorithm. This is followed by
conclusions and future research in section V. +

Baseline Design ‘

v

Design

TABLE | Sample data points for

NOTATION AND ACRONYMS USED IN THISPAPER

polynomial regression variableg
Vbb . supply voltage of nano-CMOS circuit
Vin . input voltage to nano-CMOS circuit +
Vout : output voltage to nano-CMOS circui .
Wp : width of the PMOS transistor Develop Regression
Wh : width of the NMOS transistor
Powef, co : power consumption of VCO models
Frequency,~, : frequency of VCO
g(z) : cost function +
h(z) : non-linear inequality constraint -
SSE : Sum of squared error Form cost function,
RMSE . Root of Mean Square Error . .
R? : Coefficient of Determination constraint functlon,
GA : Genetic Algorithm
bounds
Il. PROPOSEDDESIGN OPTIMIZATION FLOW FOR #

NANO-CMOS VCO

This section presents the proposed flow for constrained —pp» _
optimization in nano-CMOS based analog circuits. Althgugh algorithm
a VCO is used as an example circuit in this case study for
reducing power consumption, and increasing frequency, the
optimization flow can be generalized for other nano-CMOS
analog circuits (like operational amplifiers, filters, serzsn-
plifiers, etc.) as well.

The input to the proposed design flow is a baseline design
of circuit. This is one time manual design step. At this stage
netlist is sufficient for the design flow. For a schematic gesi
this netlist will have only active devices whereas for a layo
design full-blown parasitics (RCLK) is included. In thispe,

Run Optimizatior

=)

we have used a 50 nm CMOS based VCO. A baseline design Optimal design
is carried out as per the specifications. The design obgtiv variables
and constraints are identified and measured for this baselin

VCO (power and frequency). In order to collect data for
building the regression-based models, exhaustive sifonkat
are performed to obtain the sample data points in the space

defined by the bounded design variables. For this study, we
consider 2 design variables i.éV,: width of the PMOS

Fig. 1. Proposed optimization flow.



transistors, and/¥,,: width of the NMOS transistors in the IIl. DESIGN AND MODELING OF50nm

current starved VCO. Thereafter, a polynomial regression CURRENTSTARVED VCO

based model is developed for each design objective (i.eepoW The circuit diagram for baseline 50nm current-starved VCO
and frequency) using these sample data points. Polynomilshown in figure 2. The supply voltagd/fp) has been
regression is efficient, reliable and allows for very fassige kept at1 V. An inverter is formed by the devices P1 and
exploration [13] in a smaller design space (like 2 desigq1. The current sources, formed by P2 and N2, limit the
variables in this paper). But it is not efficient for very higlgyrrent available to the inverter (P1 and N1). So, the imvert
dimensional circuits (many parameters) due to the numigrsiarved for current. The input voltage sets the drainerus

of coefficients limited by memory space. Other modeling, the devices P11 and N11. The currents in P11 and N11 are
techniques, like pareto surfaces [14] also suffer from th&irrored in each inverter/current source stage.

curse of dimensionality. In order to accommodate a largerThe oscillation frequency of the current-starved VCO is
design space with a higher number of variables, we may,en by equation 2 [6].

use techniques such as neural networks [15], support vector I
maqhines bgsed regression [12], kriging [;6] in the prodose Frequency., = — T D T 2)
design flow instead of polynomial regression. n X Ciot X VDD

At this stage of the design flow, the analog circuit desig/here Ip=drain current,n=number of stages(’;.;=total

problem is formulated as a constrained optimization proble capacitance on the drains of P1 and N1, dnsih=supply
For an example the following: voltage. We have chosewn=21, Ip=10uA and Ci,;=4.7 fF

for a target frequency of 100 MHz. The average power

tion by the VCO is given by the followi ion:
minimize  g(x) consumption by the is given by the following expression

subject to h(z) <0,
X <zx<Xyg.

(1) POWGI{/CO = denamic+ Psubthreshold+ Pgate-oxide (3)
= nCiutVEpFrequency .
+ Cexp (7‘/93 — VTh’) (1 — exp ( —Vas ))
Svtherm Vtherm
Whereg(z) is the cost function to be minimized and the vector
h(zx) is the non-linear inequality constraint. Veectorcorre- Vo2 B (1 (1 — Zzz) )
sponds to the design variable set=([W,,, W,]T), and X, +aWL< “) exp )
and Xy are their lower and upper bounds, respective(y:) Tou (;—:)
and h(z) are formed using the models, which are developed )
in the regression step of the flow. We have considered po _ oW 2 1.8 i
of the VCO as the design objective and frequency of the Vg(g(?;;etzc;negg ; gm&eéfgafriqgfeﬁgig?te . ’thzswtulintzltiang
as the design constraint. However, other VCO specifications . or .
like phase noise and tuning linearity may also be considiere art|cl_e (hole or electron), andandy are physical parameters
the set of design objectiveg(x) or design constraintsi(x). USEd ":j molciel!ng. dels for P dF
Cost function, constraints and bounds are formed for desigg ?anet?;enor:)lfngthn;o d?e:i or OW%“'O an I;:q%ianyco
variables which are the inputs to the optimization algonith . . gn variable S?F[ P "]. » @
This constrained optimization formulation is then fed te thquadrang ponnom_|aI regression (order=2) is apphe.d. The
optimization algorithm. polynomial regression model is expressed as follows:
A number of global optimization algorithms are available 2 i ,
in current literature for optimization of analog circuitse. flz) = Z pij X o(1)" x 2(2)". )
genetic algorithm [8], simulated annealing [16], particle #I=0
swarm optimization [17], bee-colony optimization [18].&4® Wherex(1)=W,,, z(2)=W,, f(x) may befreq or pwr andp;;
algorithms are particularly effective in finding global mpal is the matrix of coefficients obtained by polynomial regiess
or near-optimal solutions, as compared to local optimirati . i .
techniques like conjugate-gradient [19] and derivatiesdd A. Polynomial Regression Modeling of VCO Power
methods [13]. Convex Optimization has been explored in [20] The design space is explored through parametric simukation
where circuit designs are expressed as posynomial models. far the values of’,, and W), ranging from the lower bounded
have used the genetic algorithm (GA) to solve our optimarati Constraint (100nm) to upper bounded constraipng) and the
problem, as it is easily transferred to existing simulatiand data points are used to obtain least squares fit polynomial as
models. Also, GA can handle arbitrary constraints and ebjdf €quation (5). The coefficient matrix obtained as in equmati
tives unlike other commonly used optimization methodagsgi 6- Figure 3 shows the corresponding surface plot.
The output of the algorithm is the optimal values of the
design variables. The circuit is then re-simulated usires¢h 54x107° 6.8x107% —1.3x107°
design variable values for obtaining the design objectifes pij(pwr) = | 6.6 x 107° 2.7 x107° 0 (6)
example, power and frequency for the VCO. ~1.2x107° 0 0
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Fig. 2. Logical diagram for VCO with transistor sizes for 5& ICMOS based baseline design.
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Fig. 3. Surface plot for power consumption of VCO.

data. Equation 7 shows the formula used for calculating SSE.

N
SSE = (f(ai) = flx:))*. (7)
i=0

Where N=1000 are uniformly distributed points of the pa-
rameters selected in the design domain. (\We report an

SSE of 56.55pWy (z;) andﬂx\i) are the responses at point
(z;) of the data point observations and the regression based
model, respectively. One way to calculate RMSE is obtained
by substituting equation 7 in equation 8. Alternatively, RE

is shown in equation 9.

SSE
RMSE = /75 ®)

1 & _—
~ D) = Fa)2. ©)
=0

The RMSE estimates the difference between the observed data
points from simulations and the polynomial regression rhode

We analyze the sum of squared error (SSE), Root of Me&n smaller RMSE value indicates an accurate polynomial

Square Error (RMSE) and coefficient of determinatidt?)

regression model [11]. We report an RMSE of 0.23W8for

[11] as measures of goodness of fit for the polynomial réhie power model.

gression model. SSE is a measure of the discrepancy betweefihe coefficient of determination??) measures the propor-
the data and an estimation model. If the estimation modeltien of the variation of the data point observations around
well fitted, it results in predictive data values close toaried the mean that is explained by the fitted regression model.
values. A small SSE indicates a tight fit of the model to th&dvantage of usingR? is that its scale is intuitive, and an



[ ]ffeq Surface fit In order to make equation 12 the same format as equation 1,
* Theq's Wi Wy we formulate the optimization problem as follows:

15 minimize g(z) = Powek,co

such that 100 x 10° — Frequency..,, < 0,

10 100nm < z < luym. (13)

e 7z
o

freq

SNy N\
SISO SN
S SIS SOOIt Y

“““Mg‘:ss%ss‘e‘ig\*»‘?r Where cost function ig(z)=Powek,co and constraint func-

SRR tion is h(x) = 100 x 10°-Frequency.,. The lower and upper
bounds for the design variable set= [W,,, W,,]7 are 100nm
and Ium respectively. The cost function is minimized through

10  a Genetic Algorithm.

6 The Genetic Algorithm has an advantage over most of

4 \W (m) X 10_7 other techniques presented in current literature as itshelp

: in formulating the problem as a nonlinear optimization with

equality and inequality constraints [21]. Algorithm 1 steow

the pseudocode for GA applied to VCO. The inputs to the
algorithm are the cost function(z), the non-linear inequality

improvement in the regression model results in proportiongPnstraint functiom(x) and the lower ;) and upper Xu)
increase inR2. The closerR? is to 1, the greater the degreé)ounds to the design solution setNew candidates (children)

of association between variablesand the response. Equation©" the design solution set are generated with a mechanism
10 is used for measuring?. called crossover (rate=0.8) which combines part of the tigne

material of each pareat and then applies a random mutation.
Z{o(f(ﬂfi) _ @)2 If the child A inherits good characteristics from its parents
N . (10) ', it will have a higher probability to survive. The values of
> im0 (f (i) = f(2:))? child 2/, ,,, are stored in the set of childrerf. The fitness of
- ) the child z”and parent:’ population is then evaluated using
Where .(xi) Is the mean of the response at poinf)(of the g(z), h(x) and the survivors can be formed either by the fittest
data point observations. We report &3 value of 0.9943 for from " U the fittest froma’.
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Fig. 4. Surface plot for oscillating frequency of the VCO.

R*=1-

the power model. Genetic Algorithm first accepts a set of design solution
_ _ _ set (statements 6 and 7 in algorithm 1), and then constructs
B. Polynomial Regression Modeling of VCO Frequency a set of child design solution set (statements 9 to 15 in

Equation 11 shows the coefficient matrix obtained for th%Igorithm 1). The stopping criterion is provided by the nemb

frequency model. The corresponding surface plot for ceill of g_enerations (_maxgen). Table i shows_ the ﬁnal design
ing frequency is shown in figure 4 . solution set obtained from proposed Genetic Algorithm Hase

optimization.
110 x 10°  1.61 x 107 —1.02 x 107 TABLE I
pij(fre(I) — 1.17 % 107 8.57 X 106 0 (11) COMPARISON OF OBJECTIVES IN BASELINE AND OPTIMIZEDVCO.
—8.41 x 10° 0
[ Design | W, | W, [ Powerco | Frequency oo |
The goodness of fit is measured using SSE, RMSE Rhd Baseline | 1um | 500nm 60uW 111.4 MHz
described in equations 7, 8 and 10, respectively. SSE of 4.7@ Optimized | 482nm | 434nm |  47uW 105.4 MHz

x 101% Hz, RMSE of 2.184 MHz an&®? of 0.9953 is reported
for the frequency model.
V. CONCLUSIONS ANDFUTURE RESEARCH

IV. CONSTRAINED OPTIMIZATION OF VCO USING A polynomial regression model assisted constrained multi-
GENETIC ALGORITHM (GA) objective optimization has been carried out on a 50nm VCO
for simultaneous frequency and power optimization. A medel
Hased approach is beneficial as it is faster than optimitieg t
Pactual circuit. The proposed approach leads to 2Z.@ower
reduction and a frequency 100 MHz is maintained. As part
of future research, regression based models will be degdlop
taking into account supply sensitivity, temperature devitsi
such that  Frequengy,, > 100M H z, and parasitics. VCO performance parameters other thanrpowe
100nm < [W,, W,]T < 1um. (12) and frequency, such as phase noise, tuning linearity wsb al

This section discusses the development of the cost functi
constraint function and Genetic Algorithm (GA) used for o
timization. We formulate the optimization problem as folk

minimize Poweyco



Algorithm 1 Proposed Genetic Algorithm (GA) for VCO Optimization.

N R R R R R R R R R
© © X N~ ®WNRO

Select mating pool from the initial population a5 C x.

Initialize set of childrenz”= ().

for i=0 to populationsize-Ho
Select individualse/, at random fromz’.
Apply crossover tar/, to produce childz’, ;.
Randomly mutate produced child,,,; ;-
2= U -

end for

xl/I:xI/ U x/.

Evaluate fitness using(z"’), h(z"") .

Increment the counter as gen=gen+1.

: end while

: The optimal solution is obtained:,,;=z"".
: Assign ., to transistors in VCO and recreate the design using the neanpters.
: Re-simulate VCO to characterize fgreq and pwr.

: Input: Cost functiong(z), constraint functiorh(z), 100nm< z < 1um and design solution set
: Output: Optimal design solutior,;.

: Generate initial population design variahle
. Initialize the number of iterations, gen=0.
: while gen < maxgen-1do

be considered. Also, the constrained optimization probleni]
presented in this paper will solved using other algorithoehs
as the Lagrange multiplier method and artificial bee colo 2]
The effects of process variation will be incorporated irufet
statistical design flows.
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