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Abstract—The gap between abstraction levels in analog design
is a major obstacle for advancing analog and mixed-signal design
automation. Intelligent surrogate models for low-level analog
building blocks are needed to bridge behavioral and transistor-
level simulations. With this objective, artificial neural network
(ANN) metamodels are incorporated in Verilog-AMS to capture
the highly nonlinear response of the analog block. Parameterized
ANN Verilog-AMS behavioral metamodels are constructed for
efficient system-level design exploration. The application of these
intelligent metamodels to multi-objective analog block optimiza-
tion is demonstrated. To the best of the authors’ knowledge
this is the first paper to integrate artificial neural network models
in Verilog-AMS. To demonstrate the application of iVAMS, a
biologically-inspired “firefly optimization algorithm” is applied
to an OP-AMP design. The optimization process is sped up by
5580× due to the use of iVAMS with negligible loss in accuracy.

I. INTRODUCTION

Design automation tools for digital circuits have easily
followed technology trends as they have high regularity. Thus
their performance can be well controlled at different abstrac-
tion levels from top to bottom. In contrast, a hierarchical way
to tightly control and predict the performance of analog and
mixed-signal (AMS) blocks at every design phase has not yet
been established in industrial practice [1].

In a hierarchical approach, design information should prop-
agate seamlessly between abstraction levels. A key enabler
of this approach is efficient surrogate models for low-level
AMS building blocks. When a design variable, such as the
size of a transistor, in the building block changes, this model
could capture the resultant changes of the block characteristics
immediately and pass them to higher levels. This model should
also allow a system-level algorithm to fine tune its local design
variable value to optimize the overall system performance.

We propose the following requirements for such AMS
metamodels: (a ) The model should be capable of modeling
the building block performance metrics for fast design opti-
mization; (b ) The model should be able to be used in high-
level AMS behavioral simulations; (c ) The model should be
parameterized so that it can capture the entire response surface
of the building block with reasonable accuracy in a large
design space; (d ) The construction of such models should
only cost a small portion of an analog designer’s time and the
CPU time required for this process should be moderate.

The last requirement reflects the fact that the designer’s
time is more valuable than CPU time [2]. While our aim
is to minimize CPU time, minimizing the burden imposed
on the designer has higher priority. With the aforementioned
considerations, we propose an intelligent metamodel integrated
Verilog-AMS (iVAMS) module for analog blocks. iVAMS
aims at closing the gap between abstraction levels in analog
design which is currently regarded as the “number one”
requirement for advancing AMS design automation [1]. The
overall contribution of this paper, iVAMS, enables system-
level or behavioral modeling with circuit-level intelligent ar-
tificial neural network metamodels such that the gap between
system-level speed and circuit-level accuracy is bridged.

Metamodeling nano-CMOS AMS circuits is becoming pop-
ular [3], [12]. In [4], an OP-AMP design space was partitioned
and the sub-regions were approximated with local low-order
polynomials to capture nonlinearity in design space. ANN
metamodels of OP-AMP parameterized macromodels (meta-
macromodel) of our paper avoid such design space partition-
ing. Using ANN for behavioral modeling has been explored
in the literature [5]. From the prior research, the closest one
to the current paper is [6]. However, it implemented an ANN
with built-in training algorithm but not a behavioral model for
any common analog circuit.

The rest of this paper is organized as follows: Section II
presents the concept of iVAMS. Section III uses a 90 nm OP-
AMP as a case study to demonstrate the generation and use
of iVAMS for an analog block.

Fig. 1. The concept of the proposed iVAMS.



II. PROPOSED INTELLIGENT VERILOG-AMS (IVAMS)

Simulating an entire AMS system with transistor-level
netlists, though accurate, is formidable. A common solution is
to simulate the AMS system at the behavioral level. Parameter-
ized behavioral models share the same design variables as the
transistor-level design. When the values of the design variables
change, the values of the circuit parameters for the behavioral
model change accordingly. Thus the impact of the transistor-
level changes on the behavioral level are captured. iVAMS
provides such Verilog-AMS modules, as shown in Fig. 1.

The iVAMS generation flow is shown in Fig. 2. iVAMS is
based on a set of ANN metamodels [11]. The metamodels
are sampling-based and fall into two categories: the perfor-
mance metric metamodel (PMM) and the circuit parameter
metamodel (CPM). Given an analog block, PMMs estimate
its performance for any point in the design space. No actual
circuit simulation is required in this estimation process. Thus,
PMMs provide an ultra-fast way to explore the design space
of the analog block. CPMs, on the other hand, estimate the
circuit parameters required to construct a macromodel for the
analog block. By integrating the CPMs into a macromodel
and describing them in Verilog-AMS, a parameterized behav-
ioral model, called meta-macromodel, can be obtained. A
macromodel is usually a white-box or grey-box model [7]
that retains certain amount of physical information of the
analog block [8], [4], [9]. Constructing a macromodel for
an analog block requires physical insight and consumes a
great portion of the designer’s time. Constructing a metamodel
requires sampling the design space, which consumes CPU
time. Meta-macromodeling selects a suitable macromodel and
estimates the required parameters using metamodels. Given
an analog block, the goal of iVAMS generation is to obtain
the neural network metamodels (PMMs and CPMs) and the
meta-macromodel integrated Verilog-AMS module.

Fig. 2. iVAMS generation flow.

III. IVAMS CASE STUDY CIRCUIT: A 90NM OP-AMP
We apply iVAMS to the 90nm fully differential OP-AMP

shown in Fig. 3 with a 1 V supply. It consists of an oper-
ational transconductance amplifier (OTA), a common-source
amplifier, and a common-mode feedback (CMFB) circuit.

Fig. 3. OP-AMP schematic.

A. OP-AMP iVAMS Metamodel Generation
The performance metrics of interest for this OP-AMP are

the open-loop DC gain (A0), bandwidth (BW), phase margin
(PM), slew rate (SR), and power dissipation (PD) whose meta-
models are generated. In order to construct a meta-macromodel
for system-level design exploration, metamodels for the circuit
parameters used in the macromodel are also required. These
circuit parameters include the transconductance gm, and the
positive and negative maximum available currents Ip and In of
the op-amp input stage. With sufficient neurons in the hidden
layer, an ANN can approximate any function [10].

The input layer, x, is a vector of the OP-AMP design
variables which include the bias current and the transistor
widths and lengths. There are thirty transistors in the OP-
AMP design. By properly grouping the transistors, we have
sixteen design variables (N = 16). In this paper, the ANN
hidden layer consists of four neurons (M = 4) with hyperbolic
tangent function as the activation function f1. The output layer
is a single neuron employing a linear activation function f2.
The model output ŷ is one of the performance metrics or
circuit parameters. W1 is a matrix composed of the weights
of the connections from the design variables in the input layer
to the neurons in the hidden layer. Similarly, W2 is formed by
the weights of the connections from the hidden layer to the
output layer. Additional control on each neuron is through bias
bij (i = 1, 2 and j = 1, 2, ...,M ). The ANNs were trained
using 500 samples with Bayesian Regulation training.

In order to evaluate the accuracy of the iVAMS metamodels,
a verification set consisting of 2000 samples of design vari-
able and circuit response pairs was generated. This sampling
is for verification purposes only and need not be used when
iVAMS is used in a design flow. The output ŷ computed
by the metamodel is compared with the “true” output y
obtained from transistor-level simulations. To comparatively
assess the proposed iVAMS ANN metamodels, we generated
second-order polynomial (PO) metamodels and compared their
accuracy. The results are listed in Table I.



TABLE I
ACCURACY OF THE OP-AMP IVAMS METAMODELS.

Metamodel Accuracy Metric
Output Type R2 RMAE RRSE RMSE

A0
NN 0.959 1.324 0.202 41.93 V/V
PO 0.973 1.044 0.163 33.78 V/V

BW
NN 0.987 0.894 0.116 2.12 kHz
PO 0.986 0.965 0.117 2.14 kHz

PM
NN 0.901 2.161 0.317 4.99o

PO 0.348 4.466 0.807 12.70o

SR
NN 0.989 0.483 0.105 0.292 mV/ns
PO 0.985 0.662 0.119 0.332 mV/ns

PD
NN 0.996 0.523 0.062 8.306 µW
PO 0.980 1.314 0.141 18.817 µW

gm
NN 0.999 0.106 0.018 1.769 µA/V
PO 0.999 0.101 0.021 1.973 µA/V

Ip
NN 0.991 0.675 0.095 0.311 µA
PO 0.729 3.407 0.521 2.506 µA

In
NN 0.994 0.494 0.080 0.261 µA
PO 0.749 3.727 0.501 2.412 µA

The ANN metamodels achieve higher accuracy overall
except for A0. Another advantage of the ANN metamodels
over the PO metamodels is that their accuracy can be further
improved by adding more neurons to the hidden layer. All
ANN metamodels in this work employ a 4-neuron hidden layer
for simplicity. In practice, adaptively adjusting the hidden layer
size is recommended to find the optimal model.

B. iVAMS Meta-Macromodel Construction

An OP-AMP meta-macromodel can facilitate fast system-
level design exploration. Meta-macromodel construction starts
with macromodel selection. Some OP-AMP macromodels that
can be used include the structural model in [8], the linear time-
invariant (LTI) model in [4], and the symbolic model in [9].
We adopted a symbolic model similar to the one in [9] since it
not only models the op-amp small-signal behavior but also the
large-signal behavior such as slew-rate limitation. This model,
combined with the iVAMS CPMs to form the op-amp meta-
macromodel, is shown in Fig. 4.

Fig. 4. The iVAMS op-amp meta-macromodel.

The two-stage model in Fig. 4 takes into account the slew-
rate effect due to the limited maximum available positive and
negative currents Ip and In. These circuit parameters, together
with the transconductance of the first stage gm and the OP-
AMP small-signal function Ĥ(s), are functions of the design
variables. They are estimated using the iVAMS CPMs. With f1
being a hyperbolic tangent function and f2 being a pure linear
function, this architecture can be expressed mathematically as:
ŷ = b21 +

∑M
j=1 w2,j · tanh

(
b1j +

∑N
i=1 w1,ij · xi

)
, where

w1,ij ∈ W1 and w2,j ∈ W2. Implementing this equation
in Verilog-AMS is an essential step of building the iVAMS

meta-macromodel. An example is shown in Algorithm 1.
After training the neural networks for the CPMs, the neural
network weights and biases are stored in text files. In the
initial block of the OP-AMP Verilog-AMS module, these
weights and biases are read from the files, and the function
nn_metamodel computes the circuit parameter values for
the meta-macromodel. The computed circuit parameter values
are used in an analog process in the Verilog-AMS module to
realize the model in Fig. 4. The OP-AMP small-signal function
can be described using a function such as laplace_nd.

Algorithm 1 iVAMS code for the OP-AMP.
function real nn_metamodel;
integer w1, w2, b1, b2, i, j, readfile,...; real w, b, v, u;
// Read metamodel weights and bias from
// text files w1, w2, b1, and b2.
begin
w1 = $fopen("w1.txt", "r"); w2 = $fopen("w2.txt", "r");
b1 = $fopen("b1.txt", "r"); b2 = $fopen("b2.txt", "r");
v = 0.0;
for (j = 0; j < nl; j = j + 1)
begin

u = 0.0;
for (i = 0; i < size_x; i = i + 1)
begin

readfile = $fscanf(w1, "%e", w); u = u + w * x[i];
end
readfile = $fscanf(w2, "%e", w);
readfile = $fscanf(b1, "%e", b); v = v + w * tanh(u + b);

end
readfile = $fscanf(b2, "%e", b); nn_metamodel = v + b;
$fclose(w1); $fclose(w2); $fclose(b1); $fclose(b2);
end
endfunction

The quality of the meta-macromodel relies on the accuracy
of the CPMs and the suitability of the selected macromodel.
In order to validate the iVAMS meta-macromodel, simulations
using the constructed Verilog-AMS module were compared
with those using the SPICE model. The results of the AC
analysis are shown in Fig. 5. The difference seen in the
frequency responses can be reduced by adaptively adjusting
the ANN hidden layer sizes instead of using a fixed value.
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Fig. 5. AC analyses of the OP-AMP.



C. Block-Level Multiobjective Optimization Using iVAMS

We now demonstrate block-level optimization for the OP-
AMP design using the iVAMS PMMs. The optimization prob-
lem is to maximize SR and to minimize PD, constrained
by the requirements for A0, BW, and PM. An effective
approach is to find the Pareto front (PF) that consists of a
set of non-dominated solutions for the optimization problem.
The designer can then select one design from this solution set
to implement. In this paper, a metaheuristic multiobjective
firefly algorithm (MOFA) is used. It mimics the behavior of
tropic firefly swarms that are attracted toward flies with higher
flash intensity. Preliminary studies show that its performance
could surpass well established multi-objective algorithms [13].

The goal of the MOFA is to find K Pareto points that
constitute the PF through a predetermined number of itera-
tions, tmax. The algorithm starts with K randomly generated
designs [13]. In each iteration, the performance of the K OP-
AMP designs are estimated using the iVAMS PMMs. The
best design determined by the combined weighted sum of
the objectives, ψ(x), is computed for each current design.
ŜR(x) and P̂D(x) are the slew rate and power dissipation
for a design x estimated using the iVMAS PMMs, and
are normalized with respect to their own sample mean and
standard variation. The current designs will be moved to new
locations within the design space using the computed move
vectors. The PMMs are then used to check whether the new
designs satisfy the constraints. The optimization specifications
and an arbitrarily selected optimal design from the PF of a
MOFA optimization are shown in Table II.

TABLE II
OP-AMP DESIGN OPTIMIZATION.

Selected Optimal Design
Performance Constraint Predicted True

A0 (dB) > 43 56.4 55.7
BW (kHz) > 50 56.8 56.7
PM (degree) > 70 81.9 88.5

Objective
SR (mV/ns) Maximized 5.54 5.49
PD (µW) Minimized 85.11 85.77
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Fig. 6. Pareto fronts from MOFA OP-AMP optimization.

Three optimization runs have been performed for MOFA
and presented in Fig. 6. The first run is aimed at finding the

true PF. In order to approximate the true PF, K and tmax have
to be sufficiently large. In this run, K = 50 and tmax = 5000
were set experimentally. Although these numbers are large,
the runtime for this optimization is small due to ANN iVAMS
PMMs. To compare the iVAMS-assisted MOFA (iVAMS-
MOFA) with the same algorithm using SPICE models (SPICE-
MOFA) to evaluate the OP-AMP performance, we may run a
similar optimization. However, running MOFA using SPICE
(SP) models with such large K and tmax would be extremely
time consuming. Therefore, we alternatively decreased there
numbers to K = 20 and tmax = 500 and performed two
optimization runs to compared the speed of iVAMS-MOFA
and SPICE-MOFA. It can be seen that the iVAMS-MOFA is
5580 times faster than the SPICE-MOFA.

IV. CONCLUSIONS

The circuit-level accurate behavioral modeling framework
called iVAMS has been presented. The creation of an iVAMS
module for an op-amp block has been discussed. The use of
the iVAMS for block-level optimization has been demonstrated
using a novel multi-objective firefly algorithm. Construction
of parameterized behavioral models using iVAMS is also
exemplified through an op-amp case study. Future research
includes enhancing iVAMS with yield-estimation capability to
address variability of nanometer circuits.
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