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Abstract—At the nanoscale domain, the simulation, design, design has been derived, hence it is hard to predict the mgco
and optimization time of the circuits have increased signitantly  of the actual circuit. Different approaches have been pego
due to high-integration density, increasing technology aostraints, to either simplify the circuit (i.e. macromodeling) or pred

and complex device models. This necessitates fast desigrasp th tout val for the circuit usi ¢ ke
exploration techniques to meet the shorter time to market diven € output values for the circurt using surrogate appros

by consumer electronics. This paper presents non-polynomi Metamodeling, multiple regression techniques, and Design
metamodels (surrogate models) using neural networks to racce Experiments [1], [2].

the desi_g_n optimization time of complex nan_o-CMOS circuit vith Metamodeling based design flows are investigated as ap-
no sacrifice on accuracy. The physical design aware neural te proaches to reduce design cycle time. The proposed non-
works are trained and used as metamodels to predict frequeng - . . .

locking time, and power of a PLL circuit. Different architec tures polynomial me.tamodellng design flow speeds up design pro-
for neural networks are compared with traditional polynomial CesS by creating accurate metamodels and uses them for
functions that have been generated for the same circuit chacter-  optimization. Metamodeling is used in variety of different
istics. Thorough experimental results show that only 100 saple fields to predict the values of time consuming or expensive
points are sufficient for neural networks to predict the output of processes [3]. Creation of the metamodel starts with sagpli

circuits with 21 design parameters within 3% accuracy, whit the desi d th - th tical h
improves the accuracy by 56% over polynomial metamodels. e design space an en using mathematical approaches

The generated metamodels are used to perform optimization t0 create formula(s) for output prediction. For circuiteet
of the PLL using a bee colony algorithm. It is observed that sampling is performed using circuit simulations. There are

the non-polynomial (using neural networks) metamodels adeve (ifferent approaches to create the predictive formuldgs)y-
more accurate results than polynomial metamodels in shorte nomial least square regression is the most common and very

optimization time. . . o . ..
Index Terms—Metamodeling, Neural Networks, Nano-CMOS, widely used [1]. Its simplicity is very attractive, but it rsot

PLL, Polynomial, Modeling, Circuit Optimization efficient for very high dimensional circuits (many params)e
due to the number of coefficients which is limited by memory
|. INTRODUCTION space. To improve polynomial regression models, splines ca

The design constraints on the designer with competitive tirrlflJe used. But they also have the same limitations as regular

? : . glynomials for high dimensional datasets.
to market discourages the use of slow exhaustive desigrespac, . .
. : Neural networks may be an answer for creating very high
exploration to reach fully optimal performance. At the sam . L ; .
. - o . imensional models [4]. For a limited amount of simulations
time accurate circuit level, full-blown parasitic netlisased

. S : the trained neural network preforms almost equally well for
design optimization may be intractable for current naniesca ) .

) . L .. any number of parameters. Multi-layer networks are trained
high-density complex circuits. In many cases optimization

. e Lo ; .In parallel for every input by adjusting corresponding wegg
is very sub-optimal and the design is within certain des'%r non-linear and linear functions. Once the network lsarn

margins. For nanoscale circuits, the simulation, desigd a : . : )
rgins. . i Co . ~and conducts final adjustments for weights of the internal
optimization time has increased significantly due to high-

integration density, increasing technology constrairesd unctions, it is able to predict the values with only the namb

. : . . of parameters times the number of layers functions in the
complex device models. It is especially true for analogadix . S
) o . ) ”, . model. This makes neural networks very robust. Finding the
signal (AMS) circuits. Following Amdahl’s law, considegn

the slowest part in the optimization process, circuit satiohs right architecture for a neural network usually requiresgo

have the highest priority. Simulation is needed for AM§xpe'r|m-entat|on. A .few techn!ques are cor_1$|dered in this
-work: different non-linear functions and varying the ambun

;gﬁﬁ;iﬁiﬁ ?t:lemceirr(l:?fi\tl n;?;gﬁg;:fgnféarilr eg:t:;rt?ﬁ WHSI of neurons in the hidden layer. The data to create the neural
P 9 y ¥ nhetworks are directly generated by SPICE. Once the neural

OThis research is supported in part by SRC award P10883 anda&fels network. is generated it can predict the output Ya!ue \_/ery fas
CNS-0854182 and DUE-0942629. due to its small complexity. Hence, the prediction is much



faster than SPICE. A trained neural network can also bdll. THE CASE Stuby CIRCUIT: A 180nm CMOS PLL
used by constrained single and multi objective optimizatio

algorithms, just like regular metamodels. .
The rest of the paper is organized as follows: Section The phase locked loop (PLL) is a closed feedback loop

Il discusses related previous research. A brief overview s¥stem which is implemented as shown in Fig. 1. The detailed

the PLL circuit that was used in this paper is presented Ir?sellne design of this circuit is discussed in [17].

Section Ill. Section IV describes the creation and use of

neural networks for the PLL circuit. Experimental resulis a g‘ffeﬂ‘ce
. . . . . . 0ocK 1n

presented in Section V. The paper is concluded with dirastio Phase Detector | | Charge Pump | | | oy [Clock Out

. . PD Loop Filter (CP
for future research in Section VI. (PD) P P
Frequency Divider

Il. RELATED RESEARCH ANDCONTRIBUTIONS <2

The current literature is rich in research trying to speedup Fig. 1. Block diagram of a phase locked loop (PLL).
the design process of complex AMS circuits. Design space
exploration approaches from high level descriptions ol@ma ] o o -
circuits are given in [5]. Posynomial modeling for gatesigi ' "€ Physical design is shown in Fig. 2. A parasitic-aware
is presented in [6]. A layout-aware modeling approach far-anN€tlist, including resistance (R), capacitance (C) andicad
log synthesis is given in [7]. A single manual design itemati [@nce (both self and mutual) (LK) is extracted from the layou
design flow is proposed in [8] for fast design optimization 0'{he_netllst is then parameterized and used for simulations f
VCOs. the input data sets for each metamodel. Once the data are

The following are selected research works that have appligtf€ived from SPICE simulations, they are processed by an
neural networks in VLSI design. In [9], the author Shongternal tool (Matlab).
that neural networks can be used for circuit analysis. 1r},[10
the authors introduce the creation of neural networks for
estimating the output of operational amplifiers from a high
level perspective which does not account for parasitics. In
[11], optimal and Hopfield binary neural networks are used fo
testing stuck at fault and delay faults in digital circults[12],
neural networks are trained on multi-dimensional mapping
between geometrical variables and the values of indepénden
circuit elements to predict of electromagnetic behavior of
vias. In [13], the authors propose to speed up simulations
by replacing repeated simulation data such as polynomial
and look up models with well trained neural networks. In
[14], a Hopfield neural network model is used to represent
digital circuit behavior. In [15], a feed-forward dynamieural
network model is developed for amplifier and mixer circuits
directly from input-output large-signal measurementshuuit
having to rely on internal details of the circuit. In [16],urel
networks are used for electromagnetic susceptibility yesisl
and optimization of electronic devices.

The novel contributions of this paper are as follows. A
non-polynomial metamodel based design optimization flaw fo
analog/mixed-signal circuits is presented. For non-pogial
metamodeling different architectures of neural networies a
considered to perform tradeoff analysis between speed and
accuracy. As a practical demonstration of the use of the non-
polynomial neural network metamodels, a physical design
optimization of a 180 nm CMOS PLL is undertaken. A
biologically inspired tool, the bee colony algorithm is dse SPICE simulation results of the circuit are shown in Fig.
for optimization of the PLL physical design that uses th&, which shows the frequency over time plot, with the PLL
metamodels instead of the actual circuit (i.e. the parasitocking at 24.58us. The baseline phase noise diagram in Fig.
aware netlist). It is demonstrated that the non-polynomidl shows that the circuit has acceptable phase noise, (-163
neural network metamodel assisted optimization is faster adBc/Hz at 10 Hz offset). The average power consumption of
more accurate compared to the polynomial metamodel. the PLL is 9.28 mW.

Fig. 2. Physical design of the PLL with area 52526 pm.
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layer can estimate any continuous function that maps to real
numbers.

Over-fitting is the phenomenon where the network becomes
worse instead of improving after a certain point duringrtirag
when it is trained to as low errors as possible. This is bexaus
excessive training or a large amount of neurons in the hidden
layer may make the network memorize the training patterns
and stop adjusting the weights. There are several methods to
avoid over-fitting. One method is regularization which grte
x10” limit the complexity of the network such that it is unable to

learn peculiarities. Another method is early stopping \whic
Fig. 3. Frequency plot for the PLL circuit. aims to stop training at the point of optimal generalization
Phase Noise of PLL 1) Mult|laye_r Neural Ne_tworks A mult|ple_layer negral_
-155 ‘ network consists of an input, a with nonlinear activation
function in hidden layer, and linear activation function in
1601 7 the output layer. Multilayer networks are very flexible and
powerful due to their ability to represent nonlinear as well
as linear functions. The multilayer network needs to have at
least one non-linear function, otherwise a compositiomnadr
functions becomes just another linear function.
The two common nonlinear activation functions that are

2.9/

Frequency (Hz)
™
&
&

n
@

I
5
o

o
o
@
-
DL
2
w
w
2]

15
Time (s)

—-165F Il

dBc/Hz

-170F 1

-175 i i
1 2 103

1 Frequelnocy (Hz) 10 usually used for the hidden layer are [18]:
Fig. 4. Phase noise of the baseline PLL circuit. () 1
bj (v;) = <1+€7_)‘U1) , or 1)

IV. NON-POLYNOMIAL METAMODELING OF THEPLL bj (Uj) = tanh(/\vj), (2

A. Metamodeling Design Flow wherej denotes a neuron in the hidden layer,andv; are

The proposed design flow using non-polynomial metamoti® input and output, respectively, ands the neuron transfer
els is shown in Fig. 5. The physical design is parameteriz&ction steepness. The predicted output is given by:
and used twice, once for training samples and once more d
for verification. The non-polyn_omial metamo_dels are Créat_e j= Zgjbj (v;) + Bo, (3)
for each output set of the design. Computationally expensiv J=1
optimization algorithms can be applied using the fast non-

polynomial metamodels as they are ultra fast compared to %\%gere B; is the weight in the output due to neurgnd is

actual RCLK netlist. The optimized values are then used & number of neurons in the hidden layer afda constant.

adjust the initial physical layout to create the near optim cr?rr:gte other hand, a linear layer function has the following
I .

design. This design flow only uses 2 iterations for physic s
design, at the beginning and the end. Overall, the designiflow vi = wjiwi + wjo, (4)
as accurate as the parasitic-aware netlist of the circuit lna- i=1

fast due to the metamodel abstraction, which in turn mirﬁmitherewﬁ is the weight connection between thigh compo-
the amount of time the designer needs to spend on the desi@gRt in the hidden layer and thith component of the input.

Neural network models are composed of a mass of fairly
simple computational elements and rich interconnectians b
tween the elements. Neural networks operate in a paralghere y, and y;, are the actual and predicted responses,
and distributed fashion which may resemble biological akurespectively, at thé-th training point (ofn).
networks. Most neural networks have some sort of “training” 2) Radial Neural Networks. Radial neural networks are
rule by which the weights of connections are adjusted on thé&so two-layer networks. The first layer has radial base neu-
basis of presented patterns. They normally have great fiterrons, and calculates its weighted inputs with distance and
for parallelism, since the computations of the componerds ats net input with a radial function. The second layer has
independent of each other. It has been proven in the univergaear neurons, and calculates its weighted input with a dot
approximation theorem that a neural network with one hiddgmoduct function and its net inputs by combining its weighte

optimization of the circuit. The network training is performed to minimize the least
B. Neural Network Exploration for Non-Polynomial Meta- Sduare criterion:
modeling n

E=% (yx— k) )]

k=1
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Fig. 5. The non-polynomial metamodeling based design flow.

inputs and biases. Both layers have biases. The radial netwo 1) Normalizing to mearix:) 0 and standard deviatiofw)

mathematical model is as follows: 1.
N 2) Standardizing to midrange 0 and range 2 (from -1 to 1).
vy= ; aip (| @ = ci 1) ) D. Metamodel Generation from Trained Neural Network Data

wherec; is the center vector of neurai = is the prediction ~ FOr comparison purposes, the data was fitted into partial

point, p is the neuron’s transfer function ang are the weighs polynomial equations. Since the full polynomial function

of the linear neuron. would result in a very large amount of coefficients for 21
Initially the radial basis layer has no neurons. The follogi Variables, partial polynomial functions of order of 1 thghu

steps are repeated until the network’s mean squared etimr f§ are considered. Further, the stepwise regression meghod i

vector with the greatest error is found. A radial basis neurdunction’s outcome.

is added with weights equal to that vector. The linear lay@f pmetamodel Selection Criteria

weights are then recalculated to minimize the error. Th b ; del ted f th
Each neuron in the radial basis layer will output a value ere may be numerous metamodels created from the same

5 X
according to how close the input vector is to each neuror?gmgled se:c. fRM_?E aSR T\;Ie con;mon mEtrlcs l:?s,\jgéor.
weight vector. Thus, radial basis neurons with weight vestodoodness of fit. The Root Mean Square Error ( ) is

quite different from the input vector have will have outputgle”veOI from sum of square errors (SSE):

near to zero. These small outputs have only a negligibleeffe '
on the linear output neurons. RMSE = NSSE ()

In contrast, a radial basis neuron with a weight vector close
to the input vector produces a value near 1. If a neuron has an
output of 1 its output weights in the second layer pass their

values to the linear neurons in the second layer.

L
— ~ E (y(xk)—l}(zk))Q- (8)
k=1

. . Wherey are the actual simulation result values andre the

C. Sandardizing or Normalizing Data results of the metamodel at the same location as the sironlati

The data set is generated from the RLCK parasitic awasgint. R? is the coefficient of determination, which predicts
netlist simulations. The input data set is the same for evefye probability of a future result to be predicted by the mode
metamodel and is generated using Latin Hyper Cube Sampliagd is also used to verify the model accuracy.
(LHS). LHS supports any amount of planes and is proven toThe created model may fit perfectly to the training data
work better than Monte Carlo due to the more even distrilbutiget but may not qualify as a good model to represent the
of points with still the random factor that helps to deteciutput for the given process at other points. For this reaben
nonlinearity. LHS divides each plane (parameter) into i.ativerification data set is created so that the points are arelif
squares and randomly picks a point from each square. Out@#ations than the original sample. It is a good idea not ® us
is generated for each run from SPICE simulations saving eagle verification set for training, since it will defeat therpase
needed value to its own data set. Hence, each metamodel fagesting the metamodel on totally unbiased points. If the
its own target data set. This paper targets neural netwbsts tverification RMSE and Rvalues do not differ very much from

have a single output with multiple inputs. the training values, then the model has been trained ctyrect
The validation and test data must be standardized or ngfherwise it has not.

malized using the statistics computed from the training@dat ) o o

It is desirable to either normalize or standardize the inpfit Design Optimization of the PLL Circuit

data as the input dataset has large dynamic range. If not, th&he best (may be the most accurate or the fastest, depending
training of higher values can outweigh the lower and the aleuion the requirement) non-polynomial metamodels from the
network will not train properly. In this paper, 2 commonleds previous section need to be selected for optimization. The
methods are applied to standardize the data: optimization algorithm that is being used is the Bee Colony
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Bee Colony Optimization Using Polynomial and NN Metamodels
T

Algorithm (BCA). BCA is the artificial representation of 5
a bee colony behavior as bees try to find the best fo )
source [19], [20]. More information about the algorithm et

context of AMS circuit optimization can be found in previou
research [17]. This algorithm was found to be effective fc
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(1/(power*lockingTime)

use on AMS circuits with metamodels. As a specific objectiv R J 1
and constraint optimization, the PLL circuit is characted a 1
for output frequency, power, and locking time. A separa ‘

10
lterations

metamodel is created for each Figure-of-Merit (FoM) frora th

same sample set. _EaCh _SIﬂgIG simulation calculates all FOM$ 5. Bee Colony optimization conducted on polynomial aredral
so the number of simulations that are needed does not depeetdork metamodels for optimizing power and locking timehivi 0.5% of
on the number of the metamodels that need to be created -7 GHz frequency constraint.

V. EXPERIMENTAL RESULTS TABLE Il

Given that each SPICE simulation for the PLL circuit PLL CIRCUIT PARAMETERS AFTEROPTIMIZATION.
takes approximately 10 minutes to converge, the amount of
simulation runs are limited. In this work 100 simulations fo |
training and 30 simulations for verification have been chose Loczz‘g’eTrim s g%?:g ;"391 E\LVS
Different architectures of neural networks are evaluake. Frequency | 2.6900 GHz| 2.7026 GHz
feed-forward networks two differentiable transfer funos
(tanh - tansig, and logarithmic - logsig) are used for thelaid
layer. In addition, the experimental results also consitier
difference between raw regular input data in comparison to
normalized and standardized input sets. This paper explored the generation and usage of neural

The verification data set is also chosen using LHS, but it ietworks for metamodels of a PLL circuit. The bee colony
ensured that none of the points match the training set. Aftgigorithm with both non-polynomial and polynomial meta-
the neural network training is completed, the input valu®s fmodels has been used for optimization. Neural networks are
verification set are fed into the network and the RMSE valueigusable and can be used as a system of equations to acguratel
calculated for the verification set. TH values are calculated represent the needed output. Neural networks show on averag
for training and verification sets for each combination &f th5694 increase in accuracy of prediction over the polynomial
above neural networks. Selected results are summarizedyigtamodels that have been generated from the same input data
Tables | and Il for brevity. The statistics of the best crdatesamples. In addition, neural network prediction, which s o
polynomial functions that were created from [1] are listed iaverage within 3.2% of SPICE output, is enormously faster
the last rows of the tables for comparison purposes. than SPICE simulation and is shown to find better solution

From the data it is observed that neural networks Wiifluring the optimization phase of design. Even though the cir
no standardization of the input data perform the worst. Evegit that this paper uses as an example is parameterize@with
though polynomials show best results without standarizat parameters, in future work higher and more complex circuits

or normalization, this is not the case for neural netWOfHSOA that can have hundreds of parameters will be investiga‘[ed_
it can be concluded that neural networks perform bettendjtti

FoM | Polynomial | Neural Network |

VI. CONCLUSION AND FUTURE RESEARCH
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logsig—purelin minmax 0.917 0.664 48.89 MHz 9
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logsig—purelin meanstd 0.843 0.733 53.60 MHz 1
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