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Abstract—At the nanoscale domain, the simulation, design,
and optimization time of the circuits have increased significantly
due to high-integration density, increasing technology constraints,
and complex device models. This necessitates fast design space
exploration techniques to meet the shorter time to market driven
by consumer electronics. This paper presents non-polynomial
metamodels (surrogate models) using neural networks to reduce
the design optimization time of complex nano-CMOS circuit with
no sacrifice on accuracy. The physical design aware neural net-
works are trained and used as metamodels to predict frequency,
locking time, and power of a PLL circuit. Different architec tures
for neural networks are compared with traditional polynomi al
functions that have been generated for the same circuit character-
istics. Thorough experimental results show that only 100 sample
points are sufficient for neural networks to predict the output of
circuits with 21 design parameters within 3% accuracy, which
improves the accuracy by 56% over polynomial metamodels.
The generated metamodels are used to perform optimization
of the PLL using a bee colony algorithm. It is observed that
the non-polynomial (using neural networks) metamodels achieve
more accurate results than polynomial metamodels in shorter
optimization time.

Index Terms—Metamodeling, Neural Networks, Nano-CMOS,
PLL, Polynomial, Modeling, Circuit Optimization

I. I NTRODUCTION

The design constraints on the designer with competitive time
to market discourages the use of slow exhaustive design space
exploration to reach fully optimal performance. At the same
time accurate circuit level, full-blown parasitic netlistbased
design optimization may be intractable for current nanoscale
high-density complex circuits. In many cases optimization
is very sub-optimal and the design is within certain design
margins. For nanoscale circuits, the simulation, design, and
optimization time has increased significantly due to high-
integration density, increasing technology constraints,and
complex device models. It is especially true for analog/mixed-
signal (AMS) circuits. Following Amdahl’s law, considering
the slowest part in the optimization process, circuit simulations
have the highest priority. Simulation is needed for AMS
circuits since numerical methods cannot predict the parasitics
that influence the circuit performance greatly after the physical
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design has been derived, hence it is hard to predict the outcome
of the actual circuit. Different approaches have been proposed
to either simplify the circuit (i.e. macromodeling) or predict
the output values for the circuit using surrogate approaches like
metamodeling, multiple regression techniques, and Designof
Experiments [1], [2].

Metamodeling based design flows are investigated as ap-
proaches to reduce design cycle time. The proposed non-
polynomial metamodeling design flow speeds up design pro-
cess by creating accurate metamodels and uses them for
optimization. Metamodeling is used in variety of different
fields to predict the values of time consuming or expensive
processes [3]. Creation of the metamodel starts with sampling
the design space and then using mathematical approaches
to create formula(s) for output prediction. For circuits, the
sampling is performed using circuit simulations. There are
different approaches to create the predictive formula(s).Poly-
nomial least square regression is the most common and very
widely used [1]. Its simplicity is very attractive, but it isnot
efficient for very high dimensional circuits (many parameters)
due to the number of coefficients which is limited by memory
space. To improve polynomial regression models, splines can
be used. But they also have the same limitations as regular
polynomials for high dimensional datasets.

Neural networks may be an answer for creating very high
dimensional models [4]. For a limited amount of simulations,
the trained neural network preforms almost equally well for
any number of parameters. Multi-layer networks are trained
in parallel for every input by adjusting corresponding weights
for non-linear and linear functions. Once the network learns
and conducts final adjustments for weights of the internal
functions, it is able to predict the values with only the number
of parameters times the number of layers functions in the
model. This makes neural networks very robust. Finding the
right architecture for a neural network usually requires some
experimentation. A few techniques are considered in this
work: different non-linear functions and varying the amount
of neurons in the hidden layer. The data to create the neural
networks are directly generated by SPICE. Once the neural
network is generated it can predict the output value very fast,
due to its small complexity. Hence, the prediction is much



faster than SPICE. A trained neural network can also be
used by constrained single and multi objective optimization
algorithms, just like regular metamodels.

The rest of the paper is organized as follows: Section
II discusses related previous research. A brief overview of
the PLL circuit that was used in this paper is presented in
Section III. Section IV describes the creation and use of
neural networks for the PLL circuit. Experimental results are
presented in Section V. The paper is concluded with directions
for future research in Section VI.

II. RELATED RESEARCH ANDCONTRIBUTIONS

The current literature is rich in research trying to speedup
the design process of complex AMS circuits. Design space
exploration approaches from high level descriptions of analog
circuits are given in [5]. Posynomial modeling for gate sizing
is presented in [6]. A layout-aware modeling approach for ana-
log synthesis is given in [7]. A single manual design iteration
design flow is proposed in [8] for fast design optimization of
VCOs.

The following are selected research works that have applied
neural networks in VLSI design. In [9], the author shows
that neural networks can be used for circuit analysis. In [10],
the authors introduce the creation of neural networks for
estimating the output of operational amplifiers from a high
level perspective which does not account for parasitics. In
[11], optimal and Hopfield binary neural networks are used for
testing stuck at fault and delay faults in digital circuits.In [12],
neural networks are trained on multi-dimensional mapping
between geometrical variables and the values of independent
circuit elements to predict of electromagnetic behavior of
vias. In [13], the authors propose to speed up simulations
by replacing repeated simulation data such as polynomial
and look up models with well trained neural networks. In
[14], a Hopfield neural network model is used to represent
digital circuit behavior. In [15], a feed-forward dynamic neural
network model is developed for amplifier and mixer circuits
directly from input-output large-signal measurements, without
having to rely on internal details of the circuit. In [16], neural
networks are used for electromagnetic susceptibility analysis
and optimization of electronic devices.

The novel contributions of this paper are as follows. A
non-polynomial metamodel based design optimization flow for
analog/mixed-signal circuits is presented. For non-polynomial
metamodeling different architectures of neural networks are
considered to perform tradeoff analysis between speed and
accuracy. As a practical demonstration of the use of the non-
polynomial neural network metamodels, a physical design
optimization of a 180 nm CMOS PLL is undertaken. A
biologically inspired tool, the bee colony algorithm is used
for optimization of the PLL physical design that uses the
metamodels instead of the actual circuit (i.e. the parasitic
aware netlist). It is demonstrated that the non-polynomial
neural network metamodel assisted optimization is faster and
more accurate compared to the polynomial metamodel.

III. T HE CASE STUDY CIRCUIT: A 180NM CMOS PLL

The phase locked loop (PLL) is a closed feedback loop
system which is implemented as shown in Fig. 1. The detailed
baseline design of this circuit is discussed in [17].

LC−VCO
Phase Detector

(PD)

Clock Out

Reference
Clock In Charge Pump

Loop Filter (CP)

Frequency Divider
2

Fig. 1. Block diagram of a phase locked loop (PLL).

The physical design is shown in Fig. 2. A parasitic-aware
netlist, including resistance (R), capacitance (C) and induc-
tance (both self and mutual) (LK) is extracted from the layout.
The netlist is then parameterized and used for simulations for
the input data sets for each metamodel. Once the data are
received from SPICE simulations, they are processed by an
external tool (Matlab).
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Fig. 2. Physical design of the PLL with area 525×326µm.

SPICE simulation results of the circuit are shown in Fig.
3, which shows the frequency over time plot, with the PLL
locking at 24.58µs. The baseline phase noise diagram in Fig.
4 shows that the circuit has acceptable phase noise, (-163
dBc/Hz at 10 Hz offset). The average power consumption of
the PLL is 9.28 mW.
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Fig. 3. Frequency plot for the PLL circuit.
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IV. N ON-POLYNOMIAL METAMODELING OF THE PLL

A. Metamodeling Design Flow

The proposed design flow using non-polynomial metamod-
els is shown in Fig. 5. The physical design is parameterized
and used twice, once for training samples and once more
for verification. The non-polynomial metamodels are created
for each output set of the design. Computationally expensive
optimization algorithms can be applied using the fast non-
polynomial metamodels as they are ultra fast compared to the
actual RCLK netlist. The optimized values are then used to
adjust the initial physical layout to create the near optimal
design. This design flow only uses 2 iterations for physical
design, at the beginning and the end. Overall, the design flowis
as accurate as the parasitic-aware netlist of the circuit but ultra-
fast due to the metamodel abstraction, which in turn minimizes
the amount of time the designer needs to spend on the design
optimization of the circuit.

B. Neural Network Exploration for Non-Polynomial Meta-
modeling

Neural network models are composed of a mass of fairly
simple computational elements and rich interconnections be-
tween the elements. Neural networks operate in a parallel
and distributed fashion which may resemble biological neural
networks. Most neural networks have some sort of “training”
rule by which the weights of connections are adjusted on the
basis of presented patterns. They normally have great potential
for parallelism, since the computations of the components are
independent of each other. It has been proven in the universal
approximation theorem that a neural network with one hidden

layer can estimate any continuous function that maps to real
numbers.

Over-fitting is the phenomenon where the network becomes
worse instead of improving after a certain point during training
when it is trained to as low errors as possible. This is because
excessive training or a large amount of neurons in the hidden
layer may make the network memorize the training patterns
and stop adjusting the weights. There are several methods to
avoid over-fitting. One method is regularization which tries to
limit the complexity of the network such that it is unable to
learn peculiarities. Another method is early stopping which
aims to stop training at the point of optimal generalization.

1) Multilayer Neural Networks: A multiple layer neural
network consists of an input, a with nonlinear activation
function in hidden layer, and linear activation function in
the output layer. Multilayer networks are very flexible and
powerful due to their ability to represent nonlinear as well
as linear functions. The multilayer network needs to have at
least one non-linear function, otherwise a composition of linear
functions becomes just another linear function.

The two common nonlinear activation functions that are
usually used for the hidden layer are [18]:

bj (vj) =

(

1

1 + e−λvj

)

, or (1)

bj (vj) = tanh(λvj), (2)

wherej denotes a neuron in the hidden layer,bj and vj are
its input and output, respectively, andλ is the neuron transfer
function steepness. The predicted output is given by:

ŷ =

d
∑

j=1

βjbj(vj) + β0, (3)

whereβj is the weight in the output due to neuronj, d is
the number of neurons in the hidden layer andβ0 a constant.
On the other hand, a linear layer function has the following
format:

vi =

s
∑

i=1

wjixi + wj0, (4)

Wherewji is the weight connection between thejth compo-
nent in the hidden layer and theith component of the input.

The network training is performed to minimize the least
square criterion:

E =
n
∑

k=1

(yk − ŷk)
2, (5)

where yk and ŷk are the actual and predicted responses,
respectively, at thek-th training point (ofn).

2) Radial Neural Networks: Radial neural networks are
also two-layer networks. The first layer has radial base neu-
rons, and calculates its weighted inputs with distance and
its net input with a radial function. The second layer has
linear neurons, and calculates its weighted input with a dot
product function and its net inputs by combining its weighted



Sample Data

Verification Data

Output Data

Metamodel CreationBaseline Design Optimization

Optimized Values

Fig. 5. The non-polynomial metamodeling based design flow.

inputs and biases. Both layers have biases. The radial network
mathematical model is as follows:

y =

N
∑

i=1

aiρ (‖ x− ci ‖), (6)

whereci is the center vector of neuroni, x is the prediction
point,ρ is the neuron’s transfer function andai are the weighs
of the linear neuron.

Initially the radial basis layer has no neurons. The following
steps are repeated until the network’s mean squared error falls
below the desired goal. The network is simulated. The input
vector with the greatest error is found. A radial basis neuron
is added with weights equal to that vector. The linear layer
weights are then recalculated to minimize the error.

Each neuron in the radial basis layer will output a value
according to how close the input vector is to each neuron’s
weight vector. Thus, radial basis neurons with weight vectors
quite different from the input vector have will have outputs
near to zero. These small outputs have only a negligible effect
on the linear output neurons.

In contrast, a radial basis neuron with a weight vector close
to the input vector produces a value near 1. If a neuron has an
output of 1 its output weights in the second layer pass their
values to the linear neurons in the second layer.

C. Standardizing or Normalizing Data

The data set is generated from the RLCK parasitic aware
netlist simulations. The input data set is the same for every
metamodel and is generated using Latin Hyper Cube Sampling
(LHS). LHS supports any amount of planes and is proven to
work better than Monte Carlo due to the more even distribution
of points with still the random factor that helps to detect
nonlinearity. LHS divides each plane (parameter) into Latin
squares and randomly picks a point from each square. Output
is generated for each run from SPICE simulations saving each
needed value to its own data set. Hence, each metamodel has
its own target data set. This paper targets neural networks that
have a single output with multiple inputs.

The validation and test data must be standardized or nor-
malized using the statistics computed from the training data.
It is desirable to either normalize or standardize the input
data as the input dataset has large dynamic range. If not, the
training of higher values can outweigh the lower and the neural
network will not train properly. In this paper, 2 commonly used
methods are applied to standardize the data:

1) Normalizing to mean(µ) 0 and standard deviation(σ)
1.

2) Standardizing to midrange 0 and range 2 (from -1 to 1).

D. Metamodel Generation from Trained Neural Network Data

For comparison purposes, the data was fitted into partial
polynomial equations. Since the full polynomial function
would result in a very large amount of coefficients for 21
variables, partial polynomial functions of order of 1 through
6 are considered. Further, the stepwise regression method is
used to filter out the coefficients that do not contribute to the
function’s outcome.

E. Metamodel Selection Criteria

There may be numerous metamodels created from the same
sampled set. RMSE andR2 are common metrics used for
goodness of fit. The Root Mean Square Error (RMSE) is
derived from sum of square errors (SSE):

RMSE =

√

1

N
SSE (7)

=

√

√

√

√

1

N

N
∑

k=1

(y(xk)− ŷ(xk))
2
. (8)

Wherey are the actual simulation result values andŷ are the
results of the metamodel at the same location as the simulation
point. R2 is the coefficient of determination, which predicts
the probability of a future result to be predicted by the model
and is also used to verify the model accuracy.

The created model may fit perfectly to the training data
set but may not qualify as a good model to represent the
output for the given process at other points. For this reason, the
verification data set is created so that the points are at different
locations than the original sample. It is a good idea not to use
the verification set for training, since it will defeat the purpose
of testing the metamodel on totally unbiased points. If the
verification RMSE and R2 values do not differ very much from
the training values, then the model has been trained correctly,
otherwise it has not.

F. Design Optimization of the PLL Circuit

The best (may be the most accurate or the fastest, depending
on the requirement) non-polynomial metamodels from the
previous section need to be selected for optimization. The
optimization algorithm that is being used is the Bee Colony



Algorithm (BCA). BCA is the artificial representation of
a bee colony behavior as bees try to find the best food
source [19], [20]. More information about the algorithm in the
context of AMS circuit optimization can be found in previous
research [17]. This algorithm was found to be effective for
use on AMS circuits with metamodels. As a specific objective
and constraint optimization, the PLL circuit is characterized
for output frequency, power, and locking time. A separate
metamodel is created for each Figure-of-Merit (FoM) from the
same sample set. Each single simulation calculates all FoMs
so the number of simulations that are needed does not depend
on the number of the metamodels that need to be created.

V. EXPERIMENTAL RESULTS

Given that each SPICE simulation for the PLL circuit
takes approximately 10 minutes to converge, the amount of
simulation runs are limited. In this work 100 simulations for
training and 30 simulations for verification have been chosen.
Different architectures of neural networks are evaluated.For
feed-forward networks two differentiable transfer functions
(tanh - tansig, and logarithmic - logsig) are used for the hidden
layer. In addition, the experimental results also considerthe
difference between raw regular input data in comparison to
normalized and standardized input sets.

The verification data set is also chosen using LHS, but it is
ensured that none of the points match the training set. After
the neural network training is completed, the input values for
verification set are fed into the network and the RMSE value is
calculated for the verification set. TheR2 values are calculated
for training and verification sets for each combination of the
above neural networks. Selected results are summarized in
Tables I and II for brevity. The statistics of the best created
polynomial functions that were created from [1] are listed in
the last rows of the tables for comparison purposes.

From the data it is observed that neural networks with
no standardization of the input data perform the worst. Even
though polynomials show best results without standardization
or normalization, this is not the case for neural networks. Also,
it can be concluded that neural networks perform better fitting
for this circuit, mostly because of the non-linear and linear
flexibility of the neural networks. The data also demonstrates
which architecture and normalization or standardization should
be used, i.e. which has the best performance.

Fig. 6 shows the progression of the FoM as the BCA
optimization progresses. The frequency metamodel is used
to filter (constraint) the results within 0.05% of the required
2.7 GHz operational locking frequency of the PLL, which
can be used in Multichannel Multipoint Distribution Systems
(MMDS). The constraint narrows down the search criteria for
the algorithm. If the model is within range for frequency, the
power and locking time metamodels are used to calculate a
composite FoM, which is defined by:

FoM =

(

1

power × lockingT ime

)

. (9)

Table III shows the optimized values for both polynomial
and neural network metamodels.

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5
x 10

9

Iterations

m
ax

(1
/(

po
w

er
*l

oc
ki

ng
T

im
e)

Bee Colony Optimization Using Polynomial and NN Metamodels

 

 

polynomial
neural network

Fig. 6. Bee Colony optimization conducted on polynomial andneural
network metamodels for optimizing power and locking time within 0.5% of
2.7 GHz frequency constraint.

TABLE III
PLL CIRCUIT PARAMETERS AFTEROPTIMIZATION .

FoM Polynomial Neural Network

Power 3.9 mW 3.9 mW
Locking Time 8.476µs 3.3147µs

Frequency 2.6909 GHz 2.7026 GHz

VI. CONCLUSION AND FUTURE RESEARCH

This paper explored the generation and usage of neural
networks for metamodels of a PLL circuit. The bee colony
algorithm with both non-polynomial and polynomial meta-
models has been used for optimization. Neural networks are
reusable and can be used as a system of equations to accurately
represent the needed output. Neural networks show on average
56% increase in accuracy of prediction over the polynomial
metamodels that have been generated from the same input data
samples. In addition, neural network prediction, which is on
average within 3.2% of SPICE output, is enormously faster
than SPICE simulation and is shown to find better solution
during the optimization phase of design. Even though the cir-
cuit that this paper uses as an example is parameterized with21
parameters, in future work higher and more complex circuits
that can have hundreds of parameters will be investigated.
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