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Abstract—Simulations using SPICE provide accurate design
exploration but consume a considerable amount of time and c¢a
be infeasible for large circuits. The continued technologyscaling
requires that more circuit parameters are accounted for alag
with the process variation effects. Regression models havgeen
widely researched and while they present an acceptable acacy
for simulation purposes, they fail to account for the strong
correlation effect between parameters on the design. Thisgper
presents an ultra-fast design-optimization flow that combies
correlation-aware Kriging metamodels and a simulated annaling
algorithm that operates on them. The Kriging-based method
generates metamodels of a clamped bitline sense amplifierciit
which take into account the effects of correlation among the

explore the design space. With metamodels, the time fogdesi
optimization is significantly reduced while providing a sea-

ably close output when compared to an exhaustive search for
an optimal design. Commonly used metamodeling techniques
include linear and low-order polynomial regressions [Z], [

[3], [4], and neural networks [5], [6], [7], [8], [9]. Intexdating
functions, which include linear and low-order polynomial
regression techniques, are one of the most popular methods
used by designers. They provide an accurate descriptidreof t
local design space but are not effective when applied glpbal
[5], [10]. Regression based techniques assume that eroers d

design and process parameters. A simulated annealing basedto process variation across the design space are random, and

optimization algorithm is used to optimize the circuit through
the Kriging metamodel. The results show that the Kriging mea-
models are very accurate with very low error. The optimization
algorithm finds an optimized precharge time while keeping paver
consumption as constraint in an average execution time of 28

they approximate this error equally over the surface pants

the metamodel. For designs and processes in which the error
due to variation is significantly correlated between thegtes
parameters across the local and global space, regressied ba

ms, as compared to a 45 minutes for an exhaustive search of themetamodels do not provide an accurate fit. The technology

design space; i.e. close td0° x faster. To the best of the authors’
knowledge this is the first paper that uses Kriging and simuléed
annealing for nano-CMOS design.

Keywords-Kriging Methods, Metamodeling, DRAM, Sense Am-
plifier, Fast Design Optimization, Simulated Annealing

I. INTRODUCTION AND CONTRIBUTIONS

Computer simulations for the design and optimization qag
analog/mixed-signal (AMS) circuits often consumes a abnsi
erable amount of time. The continued scaling and increasi
complexity of nanoscale technology increases the number g
design factors and process parameters that affect therper
mance of AMS circuits. In addition, the effects of proce
variation now has to be taken into consideration during ti}g

design process. These effects increase the already ensr

time for an exhaustive simulation search of the design sp
and makes design optimization a very time consuming ta
To increase the speed of design space exploration, desigqﬁ

resort to other alternatives such as interpolating funstidast
algorithms and metamodeling.

Metamodels are approximations of the behavior, output,
figure-of-merit (FOM), of a simulated design model in resp®n
to inputs or design parameters [1]. In essence, a metamo
is an abstraction of the design model itself. The use o
metamodels in circuit design allows the designer to effityen
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scale into deep nanometer regions significantly increases t
correlation effects between parameters, hence there i®@ ne
for design methods which accurately capture and model these
effects in the design process.

This paper presents a design methodology that uses a
metamodeling technique based on Kriging prediction method
nd uses a simulated annealing based optimization algorith
r design optimization. The Kriging based metamodel takes
into consideration the error correlation between desigutis.

R ging prediction techniques were originally used in the
eostatistics field and have now been used in other fields [2],
E?l], [12] and only recently in VLSI [13]. In generating the
etamodel, the Kriging technique predicts responses based
ression with observed data from surrounding data points
s differs from conventional regression techniques besea
T each predicted point, a new set of weights is calculated
sed on the correlations and variance of the design paints i
& local space. As a case study, a Kriging based metamodel is
generated for a clamped bitline sense amplifier. The gesekrat
metamodel is then optimized using a simulated annealing
Bhsed optimization algorithm. This methodology improves
process aware design optimization reducing computational
F?%ense while providing an optimized result.

The novel contribution of this paper is a fast Kriging

based metamodel design flow which is optimized with a

simulated annealing based algorithm.

The rest of this paper is organized as follows. A brief discus



sion of selected related research is presented in Sectidhel e

proposed design methodology is introduced in Section lll. Al A :
brief background and fundamentals of Kriging metamodeds af ' 3
presented in Section IV. Section V briefly describes thegtesi | - |
and characterization of the clamped bitline sense amplifigr: [ ey Fovs | Working Baseine Desigh
Section VI describes the Gaussian Kriging based metamodels I !
used in this work. Section VIII presents the conclusion and: }
future research directions. ! |
! [ Perform DRC/LVS/RCLK Extractiorlr Netlist with Parasitic !

Il. RELATED PRIOR RESEARCH ! ] 3

The use of metamodels for design simulation has been well '?::‘:;Z;:‘z;é:%’.;i‘f\';;?,ZZSPZ’:Z‘::)’S# i Desnang gfgiggyigif;b/;s

researched. The most popular metamodeling technique ras:::::::::,—::::i::::::::::::::::::::::::::::::::::::,j
been the low order polynomial regression technique [17], [4| ! 8 [ Perform Latin HyperCube Samplin 3
[1], [3]- In [4], a comparison of different sampling technip fffffffffffffffffffffffffffffff e bttt oietetelebebe
used for metamodel creation is presented. While low order,
polynomial regression techniques are capable of gengratin
accurate models for local optimizations, they are not very!
accurate in a global design space [5], [9], [14]. The weitgti
systems used in regression techniques are independent and
are averaged over the design space. This fails to account
for the spatial autocorrelation effects between input glesi | |
variables. In [14] circuit designs are expressed as equgtio | - T -
. . . . Krigin Method for Process Variation Aware Design Optimization

polynomial forms. These circuit equations are reduced mmfo

convex problems which are solved by geometric pmgrammingi'g. 1. The proposed Kriging assisted ultra-fast desiginopation flow.
This method ensures global optimization but does not result

in accurate surfaces due to approximations for the circuit

equations. schematic is drawn and simulated using a CAD tool. After
Neural networks (NN) have also been used to generat design is verified for key performance characteristtus,

metamodels which have been shown to outperform regressmsicm layout design is created using Design Rule Checks
techniques [8], [9], [7], [6]. Neural networks use a learn(DRC) as a guide. Once the DRC is complete, a layout vs.
ing approach to train and adjust the weights in developirghematic (LVS) verification is also completed to ensuré tha
metamodels for the underlying design system. In [8], [7}he physical design matches the circuit schematic. A pézasi
well known simulation problems are used to test the accuragytiist, including resistance, capacitance and self antiahu

of NN metamodels. Optimal metamodel generation based pjuctance (RCLK) is then extracted from the physical desig
neural networks is still researched actively particuldfdy and used for further simulations to give a more accurate
determining the optimal network structures and the apptina description of the design. The design and process parasneter
of neural network metamodeling for point targets. are identified in the netlist which is then parameterized and

ll. THE PROPOSEDKRIGING-ASSISTEDACCURATE AND  USed for sample point generations in the next step. In this flo

ULTRA-FAST DESIGN OPTIMIZATION METHODOLOGY the design parameters chosen are the transistor gate I&ngth

. . . . . . and width1V. For process parameters, threshold voltagg)(

Computationally intensive simulations are very expensive ., thickness(T,,). supply voltage(Von), and dopin

To reduce this cost, metamodels are generated to aid thgndesi ) oz ), SUPPYY 9¢(¥pp ), ping
; T concentration are considered.

process and its optimization. Commonly used metamodelfunc

tions do not take into account the error correlation betwegn | 4tin HyperCube Sampling (LHS)

design parameters, which is increasingly becoming signific . . ,
in the deep nanometer technology range. A new methodology-2tin Hypercube Sampling (LHS) techniques are one of the

Kriging Assisted Ultra-Fast Simulated Annealing Optintiaa commonly used methods for generating sample data points for

design flow is proposed. Kriging techniques take into consitf/19ing based metamodels. LHS generategandom sample
eration the error correlation effects between design perars, POINts based on arange of specified inputs. The LHS technique
The generated metamodel is then optimized using a simulafégides the input range into intervals of equal length, from
annealing based algorithm. The methodology is incorpdrat\é’h'Ch it randomly selects points from each interval suctt tha

in the design flow shown in Fig. 1. The design flow can pibre interval appears once in each row and column of a design
broken into 4 steps as described below. matrix. Data points may be selected uniformly, randomtysrfr
midpoints or in any distribution form in each interval. When

A. Design and Netlist Optimization the distribution used to sample points from each interval is
The first step in the design flow is to create a model of ththe midpoint, the technique is called Middle Latin Hyper€ub
circuit design that meets the design specifications. Traiitir Sampling (MLHS). The design points and W are used as

D | perform Optimatization of Kriging Functidn
using Simulated Annealing Based AIgoritITm




the sampling corners while the process parameters aredvadssumes a mean that is constant in the local domain of a
to model the effects of process variation. predicted point, while simple Kriging assumes a constadt an
C. Kriging Based MetaModel Generation known mean over_the global (_jomam. .
For ordinary Kriging techniques, the weights are chosen
The sample design points generated by LHS are usgf minimize the Kriging variance under the unbiasedness
with the Kriging based algorithm to generate the metamod@nstraint thate(Z(z) — Z(z)) = 0. Hence the weights are

surface. The Kriging technique generates predicted outRjosen so that the following expression is satisfied:
response points of design inputs based on observations from

the sampled data. The generated metamodel is a function of zn:/\. -1 3)
the design parametefsand W, and process parameters. Two — J '

Kriging methods, ordinary Kriging and simple Kriging, are =

used to generate metamodels for each of the FoMs (prechalés condition is not required for simple Kriging. The wetgh
time Trc, sense delay’sp, and sense margilisy;), of the then for ordinary Kriging are given by the following:

clamped bitline sense amplifier. A total of 8 metamodels are A ~(ex, eo)

generated and are compared to an accurate model generated _ ;

by exhaustive simulation. : =1t : , (4)
N . . . . A en, e

D. Optimization using Simulated Annealing Based Algorithm M” i 1 0)

A simulated annealing based algorithm is used to optimize

the Kriging metamodels. The metamodels can be optimiz¥fi€réx is a Lagrange multiplier used to ensure equationl(3).

for each of the identified FoMs. In this paper, the prechar??h_e covariance m.atrix of the observed points and for @myin
time (T'pc) is used as the objective while the average pow&9ing is given by:

consumption Ps4) is used as a design constraint. v(er,e1) - Alenen) 1
IV. FUNDAMENTALS OF KRIGING METAMODELS r— : ) : 1 (5)
Kriging methods were originally proposed in the early Y(en,e1) - vlen,en) 1 ’
1950’s by Daniel Krige (hence the term “Kriging”) for use 1 1 1 0

in geostatistical methods. Its application has since shirea W
many other fields. The fundamental idea behind Kriging is 9
that the predicted outputs are weighted averages of sampled v(er ez) = E (Jz(er) - 2(e2)l”) - ©)
data. The weights are unique to each predicted point amfle |ast row and column are absent in simple Kriging method.
are a function of the the distance between the point to be

predicted and observed points. The weights are chosen so thav. THE 45NM CLAMPED BITLINE SENSEAMPLIFIER:

the prediction variance is minimized [15], [2]. A CAse Stupy CIRCUIT

The general expression of a Kriging model is as follows:p  The Clamped Bitline Sense Amplifier Circuit Design

here

L The clamped bitline sense amplifier is a variation of the
y(xo) = Z AjBj(x) + 2(x), () conventional sense amplifier used in DRAMs. The advantage
=1 of the clamped bitline is that it is clamped to a stable vadtag
wherey(xo), is the predicted response at design pdit§) after a sensing operation. This reduces the capacitivetedfe
{B;(x),j =1,---, L} is aspecific set of basic functions ovetthe bitlines during the sensing operation, hence resuitirg
the design domai v, A; are fitting coefficients (also known decreased dynamic power consumption and sense delay time
as weights) to be determined an¢x) is the random error. [17], [18]. Fig. 2(a) shows the circuit schematic designtud t
Kriging differs from common least squares based approaclgamped bitline sense amplifier. Transistors MP1, MP2, MN1
in that z(x) is assumed to be a random process and not inded MN2 form the cross-coupled inverters, while transgstor
pendent, unique to each weight and not distributed idditica MN3 and MN4 provide a low impedance between the bitlines
It is assumed that the process has a known mean, varighcethroughVer s p.
and correlation function. The correlation function, cdlige The initial design parameters for the transistors are fengt
variogramin geophysics, is expressed as follows: L,, L, = 45 nm, widthW,, = 120 nm, andi¥,, = 240 nm.
- These dimensions are based on the nominal 45 nm technology
r(s,t) = Corr(z(s), 2(t)). 2) node values and similar designs in [19]. The clamped bitline
The variogram is used to derive the Kriging weights, sense amplifier needs matched transistors for optimal perfo
The autocorrelation of the design points is characterizetthi® mance, making it a good test circuit to model the effects of
covariance function [16]. The weights are chosen so that theocess variation. The physical layout design is shown @n Fi
Kriging variance is minimized. There are different vaigats 2(b). The extracted SPICE netlist from the layout includes t
of Kriging models. Two methods explored in this paper anearasitics of the design which impact the its performance as
the ordinary and simple Kriging techniques. Ordinary Kmigyi seen in Table I.



detected by the sense amplifiers. The cell data value affect t

SrAP sense delay. The impact of the bitline capacitance on thgesen
E E delay is reduced by the design of the clamped bitline.
MP b ﬁ P2 Sense Margins the minimum voltage that can be correctly

Vo f Vo detected by the clamped bitline.
The circuit schematic and the physical design were both
Ref'{ M M'ﬂ ’> MING ﬂ ENZ M@ %Ref simulated for verification and characterization. The perfo
mance was characterized based on the selected FoMs. Table |
shows a summary of these values. The last column also shows
the area of the physical design.

VI. KRIGING METAMODELING OF THE CLAMPED BITLINE
SENSE AMPLIFIER

A. Kriging Model Generation for the FoMs

The extracted netlist from the physical layout is parame-
terized and used to generate sample data points using the
LHS technique. Two Kriging methods are used to generate
the metamodels: (1) Simple Kriging and (2) Ordinary Kriging
As discussed in section 1lI-C, each Kriging predicted pasnt
calculated with a different weight. The weights are based on
the empirical semivariogram. Hence, the covariance foneti
were determined to obtain the spatial autocorrelation ef th
design parameters. For this paper, to simplify the analysis
only W,, has been used as a design parameter. A paramet-
ric analysis varyingl,, and W, shows that the FoMs are
dominated byW,,. The topology of the circuit supports this
trend: there are 10 NMOS transistors compared to 2 PMOS
transistors. The use of only,, has been used to illustrate the
proposed methodology and in future work, the approach will
be extended to designs with multiple design parameters.

The empirical variogram is estimated from the created
variogram. It is then fitted with the theoretical sphericaldal,
which was the best fit for the sampled data points. Each FoM

(b) Physical design. can be expressed based on the general form oAf the Kriging
function. For example, the predicted precharge tipeat an
Fig. 2. Circuit and layout for the clamped bitline sense afiepl unknown design pointV,f is expressed as:
N N
Vor (W) =D AW, Yor (W) (7)

B. Characterization of 45 nm Clamped Bitline Sense Amplifier Pl

In characterizing the performance of the sense amplifighere v,,.(17,,,) are the observed precharge values for the
design, the following figures of merit (FoM) were selectegiven N W,, (i = 1,2,...,N) sample points. The weights
based on previous publication [19]. A(W*) are unique for each predicted poifit* and are

Precharge and Voltage Equalization Tin the time re- calculated from Eqn. (4). Using similar equations, the galu
quired to equally precharge both bitlingsl. and BL. This for the other FoMs of the sense amplifier are predicted.
reduces power consumption during the sense operation by
reducing the voltage swing. The capacitance of the bitlife Kriging Metamodels and Accuracy Analysis
significantly affects the precharge time. The generated metamodels for the FoMs are presented in

Power Consumptiois the average power consumed by thehis section. An exhaustive baseline simulation was alswedo
clamped bitline sense amplifier. The average power measutecompare the accuracy of the Kriging predicted models. A
includes dynamic power, subthreshold leakage and gateoxidtal of 1000 design points were simulated to densely captur
leakages. With technology scaling now in the deep nanometiee design space compared to the 20 and 100 LHS points used
regions, the leakage power components now contributefsigrio generate the Kriging surfaces.
icantly to power consumption. The predicted curves for the ordinary Kriging based meta-

Sense Delays the minimum amount of time required formodels are shown in Fig. 3 witi/,, as the design input. The
sufficient voltage to appear on the bitlines that can be ctyre results for simple Kriging are very similar and are omittesd



TABLE |

FIGURES OFMERIT OF THEOPTIMAL CLAMPED BITLINE SENSEAMPLFIER.

Design Precharge timel’pc | Sense delay/sp | Power,Ps4 | Sense MarginVsas Area
(ns) (ns) (W) (mVv) pm?
Schematic 10.31 1.79 1.84 26.91 -
Layout 10.40 1.91 1.88 26.86 6.045
Optimized 8.16 1.68 1.98 28.03 6.356
Change 21.54 % 12.04 % -5.32 % -4.36 % 5.15 %
TABLE I
Ordinary Krging Predicted Precharge Time Ordinary Krging Predicted Sense Delay Time STATISTICAL ANALYSIS OF THE KRIGING PREDICTED VALUES
o e e
185 [ FoMs [ Ordinary Kriging [ Simple Kriging |
o ] Samples | 20 [ 100 [ 20 [ 100
B g’ Precharge ' ' '
£ a5 1 MSE 6.02 x 10~ 2 3.85 x 1019 5.32 x 10" 2Y 3.63 x 10~ 17
\ RMSE | 7.76 x 10 "] 6.20 x 10_ "] 7.29 x 10_""[ 6.02 x 10" '°
1 R? 0.9931 0.5560 0.9939 0.5810
7 B STD 6.95 x 10~ "] 6.09 x 10~ 6.60 x 10~ '"[ 5.91 x 10~ '°
120 140 160 Wnnzgm 200 220 240 120 140 160 Wnnzgm 200 220 240 Sense De ay
MSE 1.12 x 10~ 2] 8.27 x 10~ 2 7.49 x 10~ 2 4.02 x 10~ 2%
RMSE | 1.02 x 10~ 2.88 x 10~ 2 2.73 x 10~ %[ 2.00 x 10~ 12
(@) Ordinary Kriging for (b) Ordinary Kriging for sense RZ 0.9984 0.9985 0.9987 0.9993
precharge time delay STD 8.62 x 10 1] 2.64 x 10" 7 2.29 x 10~ 9 1.79 x 10 2
Power
MSE 3.64 x 10~ ™[ 4.35 x 10~ 1] 3.56 x 10~ 7] 4.69 x 10~ 1°
Ordinsry Kriging Predicted Average Power Ordinary Kiging Prediced Sense Margin RMSE | 6.24 x 10~ 11 6.60 x 10798 5.96 x 10~ "% 6.85 x 10~ °°
s ieiang 204l — ordinarykriing R? 0.9957 0.8145 0.8486 0.8003
2 =2 i STD 5.75 x 10~ 11| 6.40 x 10~ "% 5.69 x 10~ "% 6.66 x 10~ °
219 2 Sense Margin
g2 s MSE 2.79 x 1079 6.31 x 10°°9 2.56 x 10~ "] 4.32 x 10~
£ 205 S RMSE | 528 x 107°°] 7.94 x 10~ %] 5.06 x 10~ %[ 6.57 x 10~ °°
2 R? 0.9987 0.9753 0.9900 0.9831
165 a2 STD 2.58 x 10797 7.73 x 107 7] 4.79 x 10~ %7 6.41 x 10~ °
1.9] 2

3

140 160 180 200 220 240 140 160 180 200 220 240
Wn (M) Wn (M)

C. Experimental Setup

(c) Ordinary Kriging for aver-
age power

(d) Ordinary Kriging for sense
margin The Cadence virtuoso platform was used for the initial
circuit schematic design and the physical layout. The ekdch

and parameterized netlists were used to write Ocean Scripts
that were used to run the exhaustive simulation and gath& LH
sample data points. The Spectre analog simulator was used to
to space constraints. The plots also show the exhaustivgrdesgyerform the simulations. The algorithm used to generate the
points simulations. From the plots it is seen that the piedic kriging metamodels was written using MATLAB with the help

Kriging metamodesls for both the ordinary and simple Krigings the toolboxes mGstat [20] and SUMO [21].
techniques closely match the exhaustive simulation.

A statistical analysis on both responses shows that theVII
accuracy of the Kriging method is very high. A summary of the '
statistical analysis is shown in Table Il for both ordinanda  Simulated annealing optimization is based on the Monte
simple Kriging metamodels compared to the exhaustive desigarlo algorithm and was originally used to simulate the
surface. The metrics used for comparison are the Mean Squgfi@ealing process used in metallurgy. This gives the stedla
Error (MSE), the Root Mean Square Error (RMSE) and thgnnealing algorithm random characteristics. Successive of
correlation coefficien??: the algorithm will produce different results. The optintina
steps are presented in Algorithm 1.

The algorithm takes random walks through the design space
starting from the middle point of each design parametek-loo
ing for points with low energies. In each step, the probspili

where N is the number of design points predicted. ~ of taking a step is determined by the Boltzmann distribytion
From an analysis of the results in Table Il the predicted Arpo

points have an averagg?® of 0.99. The simulation time for P = | ¢ * if Az, is high, and p = 1 whed\r,., is low.
the generation of the metamodels was 3 mins compared toTteerefore a step will occur if a new value is better than the
hrs used for exhaustive simulation. previous one. If the new value is worse, the transition cain st

Fig. 3. Ordinary Kriging responses usiifj,, as the design parameter.

SIMULATED ANNEALING BASED OPTIMIZATION

1Y N2
RMSE = |+ > (Yi-Ti), ®)

i=1




Algorithm 1 Simulated-Annealing Based Optimization of thehe prechargd’»: FoM, improving it by 21.54%. In future

Clamped-Bitline Sense Amplifier.

1: Initialize iteration countercounter < 0.

2: Initialize temperature.

3: Initialize Cooling_Rate. .

4: Start with an initial squ/tiQCBSAi. 1

5: Calculate the FoMs fof' B.S A; using the Kriging models.

6: Consider the objective of intere®l¢, .

7: result < Arp.. < Tpc,. (2]

8: while (Ar,.!'=0) do

9 counter < max_Iteration. 3]

10:  while (counter > 0) do o

11: Generate random transition from soluti6tBS A; to 4]
CBSA;.

12: Calculate the FoMs foCBSA; using the Kriging
models. [5]

13: if (Tpc; < result) then

14: TE_UZ\t <~ Tpc. ]

15: CBSA; < OBSAJ

16: else

17: ATPC < TPC,; — Tpcj. N 7]

18: if ( Ar,. <0, random(0,1)< e~ %< ) then

19: TECLF TPCL\ 8]

20: CBSA; < CBSA,.

21: en_d if (9]

22: end if

23: counter < counter — 1.

24: end while [10]

25: O+ O x Cooling_Rate.

26: end while [11]

27: return  result and CBSA,.

occur, and its likelihood is proportional to the temperatiir

[12]

(23]

and inversely proportional t&r,.,. .

The finalized values for the design are shown in Table I.
Tpc has been reduced by 21.54 % whife 4 was increased [14]
by 5.32 %.7Tsp and Vg), was also improved by 12.04 %
and 4. 36%, respectively. The area for the final layout desiglr%]
was also increased by 5.15%. The simulated annealing bagef G. Bohling, “Kriging,” Kansas Geological Survey, TedRep., 2005.
algorithm finds optimized values in 2.78 ms compared t&7] I- Arsovski, “High-Speed Low-Power Sense Amplifier " Univer-

a run of 45 minutes for an exhaustive search optimizatiolg8

In other words, the proposed design flow could speedup the
optimization process by a factor approximatéf x.

VIII. CONCLUSIONS ANDFUTURE RESEARCH (19]

This paper presented a new methodology that uses Kriging
metamodels and the simulated annealing algorithm for se
amplifier optimization. Kriging methods generate metanhode
functions that accurately capture the global design spduiie w [21]
taking into account the spatial autocorrelation of the tnpu
design parameters. Comparisons with exhaustive simakatio
show that Kriging predicted models are very accurate with
very low RMSE and highR2. The simulated annealing based
algorithm optimized the generated metamodel function for

research, the methodology will be extended to multiplegtesi
parameters and multi-objective optimization algorithms.
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