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Abstract—Simulations using SPICE provide accurate design
exploration but consume a considerable amount of time and can
be infeasible for large circuits. The continued technologyscaling
requires that more circuit parameters are accounted for along
with the process variation effects. Regression models havebeen
widely researched and while they present an acceptable accuracy
for simulation purposes, they fail to account for the strong
correlation effect between parameters on the design. This paper
presents an ultra-fast design-optimization flow that combines
correlation-aware Kriging metamodels and a simulated annealing
algorithm that operates on them. The Kriging-based method
generates metamodels of a clamped bitline sense amplifier circuit
which take into account the effects of correlation among the
design and process parameters. A simulated annealing based
optimization algorithm is used to optimize the circuit through
the Kriging metamodel. The results show that the Kriging meta-
models are very accurate with very low error. The optimization
algorithm finds an optimized precharge time while keeping power
consumption as constraint in an average execution time of 2.78
ms, as compared to a 45 minutes for an exhaustive search of the
design space; i.e. close to106× faster. To the best of the authors’
knowledge this is the first paper that uses Kriging and simulated
annealing for nano-CMOS design.

Keywords-Kriging Methods, Metamodeling, DRAM, Sense Am-
plifier, Fast Design Optimization, Simulated Annealing

I. I NTRODUCTION AND CONTRIBUTIONS

Computer simulations for the design and optimization of
analog/mixed-signal (AMS) circuits often consumes a consid-
erable amount of time. The continued scaling and increasing
complexity of nanoscale technology increases the number of
design factors and process parameters that affect the perfor-
mance of AMS circuits. In addition, the effects of process
variation now has to be taken into consideration during the
design process. These effects increase the already enormous
time for an exhaustive simulation search of the design space
and makes design optimization a very time consuming task.
To increase the speed of design space exploration, designers
resort to other alternatives such as interpolating functions, fast
algorithms and metamodeling.

Metamodels are approximations of the behavior, output, or
figure-of-merit (FoM), of a simulated design model in response
to inputs or design parameters [1]. In essence, a metamodel
is an abstraction of the design model itself. The use of
metamodels in circuit design allows the designer to efficiently
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explore the design space. With metamodels, the time for design
optimization is significantly reduced while providing a reason-
ably close output when compared to an exhaustive search for
an optimal design. Commonly used metamodeling techniques
include linear and low-order polynomial regressions [1], [2],
[3], [4], and neural networks [5], [6], [7], [8], [9]. Interpolating
functions, which include linear and low-order polynomial
regression techniques, are one of the most popular methods
used by designers. They provide an accurate description of the
local design space but are not effective when applied globally
[5], [10]. Regression based techniques assume that errors due
to process variation across the design space are random, and
they approximate this error equally over the surface pointson
the metamodel. For designs and processes in which the error
due to variation is significantly correlated between the design
parameters across the local and global space, regression based
metamodels do not provide an accurate fit. The technology
scale into deep nanometer regions significantly increases the
correlation effects between parameters, hence there is a need
for design methods which accurately capture and model these
effects in the design process.

This paper presents a design methodology that uses a
metamodeling technique based on Kriging prediction methods
and uses a simulated annealing based optimization algorithm
for design optimization. The Kriging based metamodel takes
into consideration the error correlation between design inputs.
Kriging prediction techniques were originally used in the
geostatistics field and have now been used in other fields [2],
[11], [12] and only recently in VLSI [13]. In generating the
metamodel, the Kriging technique predicts responses basedon
regression with observed data from surrounding data points.
This differs from conventional regression techniques because
for each predicted point, a new set of weights is calculated
based on the correlations and variance of the design points in
the local space. As a case study, a Kriging based metamodel is
generated for a clamped bitline sense amplifier. The generated
metamodel is then optimized using a simulated annealing
based optimization algorithm. This methodology improves
process aware design optimization reducing computational
expense while providing an optimized result.

The novel contribution of this paper is a fast Kriging
based metamodel design flow which is optimized with a
simulated annealing based algorithm.

The rest of this paper is organized as follows. A brief discus-



sion of selected related research is presented in Section II. The
proposed design methodology is introduced in Section III. A
brief background and fundamentals of Kriging metamodels are
presented in Section IV. Section V briefly describes the design
and characterization of the clamped bitline sense amplifier.
Section VI describes the Gaussian Kriging based metamodels
used in this work. Section VIII presents the conclusion and
future research directions.

II. RELATED PRIOR RESEARCH

The use of metamodels for design simulation has been well
researched. The most popular metamodeling technique has
been the low order polynomial regression technique [12], [4],
[1], [3]. In [4], a comparison of different sampling techniques
used for metamodel creation is presented. While low order
polynomial regression techniques are capable of generating
accurate models for local optimizations, they are not very
accurate in a global design space [5], [9], [14]. The weighting
systems used in regression techniques are independent and
are averaged over the design space. This fails to account
for the spatial autocorrelation effects between input design
variables. In [14] circuit designs are expressed as equations in
polynomial forms. These circuit equations are reduced to form
convex problems which are solved by geometric programming.
This method ensures global optimization but does not result
in accurate surfaces due to approximations for the circuit
equations.

Neural networks (NN) have also been used to generate
metamodels which have been shown to outperform regression
techniques [8], [9], [7], [6]. Neural networks use a learn-
ing approach to train and adjust the weights in developing
metamodels for the underlying design system. In [8], [7],
well known simulation problems are used to test the accuracy
of NN metamodels. Optimal metamodel generation based on
neural networks is still researched actively particularlyfor
determining the optimal network structures and the application
of neural network metamodeling for point targets.

III. T HE PROPOSEDKRIGING-ASSISTEDACCURATE AND

ULTRA-FAST DESIGN OPTIMIZATION METHODOLOGY

Computationally intensive simulations are very expensive.
To reduce this cost, metamodels are generated to aid the design
process and its optimization. Commonly used metamodel func-
tions do not take into account the error correlation between
design parameters, which is increasingly becoming significant
in the deep nanometer technology range. A new methodology,
Kriging Assisted Ultra-Fast Simulated Annealing Optimization
design flow is proposed. Kriging techniques take into consid-
eration the error correlation effects between design parameters.
The generated metamodel is then optimized using a simulated
annealing based algorithm. The methodology is incorporated
in the design flow shown in Fig. 1. The design flow can be
broken into 4 steps as described below.

A. Design and Netlist Optimization

The first step in the design flow is to create a model of the
circuit design that meets the design specifications. The circuit
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Fig. 1. The proposed Kriging assisted ultra-fast design optimization flow.

schematic is drawn and simulated using a CAD tool. After
the design is verified for key performance characteristics,the
physical layout design is created using Design Rule Checks
(DRC) as a guide. Once the DRC is complete, a layout vs.
schematic (LVS) verification is also completed to ensure that
the physical design matches the circuit schematic. A parasitic
netlist, including resistance, capacitance and self and mutual
inductance (RCLK) is then extracted from the physical design
and used for further simulations to give a more accurate
description of the design. The design and process parameters
are identified in the netlist which is then parameterized and
used for sample point generations in the next step. In this flow,
the design parameters chosen are the transistor gate lengthL

and widthW . For process parameters, threshold voltage (Vth),
oxide thickness(Tox), supply voltage(VDD), and doping
concentration are considered.

B. Latin HyperCube Sampling (LHS)

Latin Hypercube Sampling (LHS) techniques are one of the
commonly used methods for generating sample data points for
Kriging based metamodels. LHS generatesn random sample
points based on a range of specified inputs. The LHS technique
divides the input range inton intervals of equal length, from
which it randomly selects points from each interval such that
the interval appears once in each row and column of a design
matrix. Data points may be selected uniformly, randomly, from
midpoints or in any distribution form in each interval. When
the distribution used to sample points from each interval is
the midpoint, the technique is called Middle Latin HyperCube
Sampling (MLHS). The design pointsL andW are used as



the sampling corners while the process parameters are varied
to model the effects of process variation.

C. Kriging Based MetaModel Generation

The sample design points generated by LHS are used
with the Kriging based algorithm to generate the metamodel
surface. The Kriging technique generates predicted output
response points of design inputs based on observations from
the sampled data. The generated metamodel is a function of
the design parametersL andW , and process parameters. Two
Kriging methods, ordinary Kriging and simple Kriging, are
used to generate metamodels for each of the FoMs (precharge
time TPC , sense delayTSD, and sense marginVSM ), of the
clamped bitline sense amplifier. A total of 8 metamodels are
generated and are compared to an accurate model generated
by exhaustive simulation.

D. Optimization using Simulated Annealing Based Algorithm

A simulated annealing based algorithm is used to optimize
the Kriging metamodels. The metamodels can be optimized
for each of the identified FoMs. In this paper, the precharge
time (TPC ) is used as the objective while the average power
consumption (PSA) is used as a design constraint.

IV. FUNDAMENTALS OF KRIGING METAMODELS

Kriging methods were originally proposed in the early
1950’s by Daniel Krige (hence the term “Kriging”) for use
in geostatistical methods. Its application has since spread into
many other fields. The fundamental idea behind Kriging is
that the predicted outputs are weighted averages of sampled
data. The weights are unique to each predicted point and
are a function of the the distance between the point to be
predicted and observed points. The weights are chosen so that
the prediction variance is minimized [15], [2].

The general expression of a Kriging model is as follows:

y(x0) =
L∑

j=1

λjBj(x) + z(x), (1)

wherey(x0), is the predicted response at design point(x0)
{Bj(x), j = 1, · · · , L} is a specific set of basic functions over
the design domainDN , λj are fitting coefficients (also known
as weights) to be determined andz(x) is the random error.
Kriging differs from common least squares based approaches
in that z(x) is assumed to be a random process and not inde-
pendent, unique to each weight and not distributed identically.
It is assumed that the process has a known mean, varianceσ2,
and correlation function. The correlation function, called the
variogram in geophysics, is expressed as follows:

r(s, t) = Corr(z(s), z(t)). (2)

The variogram is used to derive the Kriging weights,λj .
The autocorrelation of the design points is characterized by the
covariance function [16]. The weights are chosen so that the
Kriging variance is minimized. There are different variations
of Kriging models. Two methods explored in this paper are
the ordinary and simple Kriging techniques. Ordinary Kriging

assumes a mean that is constant in the local domain of a
predicted point, while simple Kriging assumes a constant and
known mean over the global domain.

For ordinary Kriging techniques, the weights are chosen
to minimize the Kriging variance under the unbiasedness
constraint thatE(Ẑ(x) − Z(x)) = 0. Hence the weights are
chosen so that the following expression is satisfied:

n∑

j=1

λj = 1. (3)

This condition is not required for simple Kriging. The weights
then for ordinary Kriging are given by the following:




λ1

...
λn

µ


 = Γ−1




γ(e1, e0)
...

γ(en, e0)
1


 , (4)

whereµ is a Lagrange multiplier used to ensure equation (3).Γ
is the covariance matrix of the observed points and for ordinary
Kriging is given by:

Γ =




γ(e1, e1) · · · γ(e1, en) 1
...

. . .
... 1

γ(en, e1) · · · γ(en, en) 1
1 1 1 0


 , (5)

where
γ(e1, e2) = E

(
|z(e1)− z(e2)|

2
)
. (6)

The last row and column are absent in simple Kriging method.

V. THE 45 NM CLAMPED BITLINE SENSE AMPLIFIER:
A CASE STUDY CIRCUIT

A. The Clamped Bitline Sense Amplifier Circuit Design

The clamped bitline sense amplifier is a variation of the
conventional sense amplifier used in DRAMs. The advantage
of the clamped bitline is that it is clamped to a stable voltage
after a sensing operation. This reduces the capacitive effect of
the bitlines during the sensing operation, hence resultingin a
decreased dynamic power consumption and sense delay time
[17], [18]. Fig. 2(a) shows the circuit schematic design of the
clamped bitline sense amplifier. Transistors MP1, MP2, MN1
and MN2 form the cross-coupled inverters, while transistors
MN3 and MN4 provide a low impedance between the bitlines
throughVCLAMP .

The initial design parameters for the transistors are length
Ln, Lp = 45 nm, widthWn = 120 nm, andWp = 240 nm.
These dimensions are based on the nominal 45 nm technology
node values and similar designs in [19]. The clamped bitline
sense amplifier needs matched transistors for optimal perfor-
mance, making it a good test circuit to model the effects of
process variation. The physical layout design is shown in Fig.
2(b). The extracted SPICE netlist from the layout includes the
parasitics of the design which impact the its performance as
seen in Table I.
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Fig. 2. Circuit and layout for the clamped bitline sense amplifier.

B. Characterization of 45 nm Clamped Bitline Sense Amplifier

In characterizing the performance of the sense amplifier
design, the following figures of merit (FoM) were selected
based on previous publication [19].

Precharge and Voltage Equalization Timeis the time re-
quired to equally precharge both bitlinesBL andBL. This
reduces power consumption during the sense operation by
reducing the voltage swing. The capacitance of the bitline
significantly affects the precharge time.

Power Consumptionis the average power consumed by the
clamped bitline sense amplifier. The average power measured
includes dynamic power, subthreshold leakage and gate oxide
leakages. With technology scaling now in the deep nanometer
regions, the leakage power components now contribute signif-
icantly to power consumption.

Sense Delayis the minimum amount of time required for
sufficient voltage to appear on the bitlines that can be correctly

detected by the sense amplifiers. The cell data value affect the
sense delay. The impact of the bitline capacitance on the sense
delay is reduced by the design of the clamped bitline.

Sense Marginis the minimum voltage that can be correctly
detected by the clamped bitline.

The circuit schematic and the physical design were both
simulated for verification and characterization. The perfor-
mance was characterized based on the selected FoMs. Table I
shows a summary of these values. The last column also shows
the area of the physical design.

VI. K RIGING METAMODELING OF THE CLAMPED BITLINE

SENSE AMPLIFIER

A. Kriging Model Generation for the FoMs

The extracted netlist from the physical layout is parame-
terized and used to generate sample data points using the
LHS technique. Two Kriging methods are used to generate
the metamodels: (1) Simple Kriging and (2) Ordinary Kriging.
As discussed in section III-C, each Kriging predicted pointis
calculated with a different weight. The weights are based on
the empirical semivariogram. Hence, the covariance functions
were determined to obtain the spatial autocorrelation of the
design parameters. For this paper, to simplify the analysis,
only Wn has been used as a design parameter. A paramet-
ric analysis varyingWn and Wp shows that the FoMs are
dominated byWn. The topology of the circuit supports this
trend: there are 10 NMOS transistors compared to 2 PMOS
transistors. The use of onlyWn has been used to illustrate the
proposed methodology and in future work, the approach will
be extended to designs with multiple design parameters.

The empirical variogram is estimated from the created
variogram. It is then fitted with the theoretical spherical model,
which was the best fit for the sampled data points. Each FoM
can be expressed based on the general form of the Kriging
function. For example, the predicted precharge timeŶpr at an
unknown design pointW ∗

n is expressed as:

Ŷpr (W
∗

n) =

N∑

i=1

λ (W ∗

n)i Ypr (Wni
) , (7)

where Ypr(Wni
) are the observed precharge values for the

given N Wni
(i = 1, 2, . . . , N ) sample points. The weights

λ(W ∗

n ) are unique for each predicted pointW ∗

n and are
calculated from Eqn. (4). Using similar equations, the values
for the other FoMs of the sense amplifier are predicted.

B. Kriging Metamodels and Accuracy Analysis

The generated metamodels for the FoMs are presented in
this section. An exhaustive baseline simulation was also done
to compare the accuracy of the Kriging predicted models. A
total of 1000 design points were simulated to densely capture
the design space compared to the 20 and 100 LHS points used
to generate the Kriging surfaces.

The predicted curves for the ordinary Kriging based meta-
models are shown in Fig. 3 withWn as the design input. The
results for simple Kriging are very similar and are omitted due



TABLE I
FIGURES OFMERIT OF THEOPTIMAL CLAMPED BITLINE SENSEAMPLFIER.

Design Precharge time,TPC Sense delay,TSD Power,PSA Sense Margin,VSM Area
(ns) (ns) (µW) (mV) µm2

Schematic 10.31 1.79 1.84 26.91 -
Layout 10.40 1.91 1.88 26.86 6.045
Optimized 8.16 1.68 1.98 28.03 6.356
Change 21.54 % 12.04 % -5.32 % -4.36 % 5.15 %
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Fig. 3. Ordinary Kriging responses usingWn as the design parameter.

to space constraints. The plots also show the exhaustive design
points simulations. From the plots it is seen that the predicted
Kriging metamodels for both the ordinary and simple Kriging
techniques closely match the exhaustive simulation.

A statistical analysis on both responses shows that the
accuracy of the Kriging method is very high. A summary of the
statistical analysis is shown in Table II for both ordinary and
simple Kriging metamodels compared to the exhaustive design
surface. The metrics used for comparison are the Mean Square
Error (MSE), the Root Mean Square Error (RMSE) and the
correlation coefficientR2:

RMSE =

√√√√ 1

N

N∑

i=1

(
Yi − Ŷi

)2

, (8)

where N is the number of design points predicted.
From an analysis of the results in Table II the predicted

points have an averageR2 of 0.99. The simulation time for
the generation of the metamodels was 3 mins compared to 72
hrs used for exhaustive simulation.

TABLE II
STATISTICAL ANALYSIS OF THE KRIGING PREDICTED VALUES.

FoMs Ordinary Kriging Simple Kriging

Samples 20 100 20 100

Precharge
MSE 6.02 × 10

−21
3.85 × 10

−19
5.32 × 10

−21
3.63 × 10

−19

RMSE 7.76 × 10
−11

6.20 × 10
−10

7.29 × 10
−11

6.02 × 10
−10

R2 0.9931 0.5560 0.9939 0.5810
STD 6.95 × 10

−11
6.09 × 10

−10
6.60 × 10

−11
5.91 × 10

−10

Sense Delay
MSE 1.12 × 10

−23
8.27 × 10

−24
7.49 × 10

−24
4.02 × 10

−24

RMSE 1.02 × 10
−10

2.88 × 10
−12

2.73 × 10
−12

2.00 × 10
−12

R2 0.9984 0.9985 0.9987 0.9993
STD 8.62 × 10

−11
2.64 × 10

−12
2.29 × 10

−12
1.79 × 10

−12

Power
MSE 3.64 × 10

−15
4.35 × 10

−15
3.56 × 10

−15
4.69 × 10

−15

RMSE 6.24 × 10
−11

6.60 × 10
−08

5.96 × 10
−08

6.85 × 10
−08

R2 0.9957 0.8145 0.8486 0.8003
STD 5.75 × 10

−11
6.40 × 10

−08
5.69 × 10

−08
6.66 × 10

−08

Sense Margin
MSE 2.79 × 10

−09
6.31 × 10

−09
2.56 × 10

−09
4.32 × 10

−09

RMSE 5.28 × 10
−05

7.94 × 10
−05

5.06 × 10
−05

6.57 × 10
−05

R2 0.9987 0.9753 0.9900 0.9831
STD 2.58 × 10

−05
7.73 × 10

−05
4.79 × 10

−05
6.41 × 10

−05

C. Experimental Setup

The Cadence virtuoso platform was used for the initial
circuit schematic design and the physical layout. The extracted
and parameterized netlists were used to write Ocean Scripts
that were used to run the exhaustive simulation and gather LHS
sample data points. The Spectre analog simulator was used to
perform the simulations. The algorithm used to generate the
Kriging metamodels was written using MATLAB with the help
of the toolboxes mGstat [20] and SUMO [21].

VII. S IMULATED ANNEALING BASED OPTIMIZATION

Simulated annealing optimization is based on the Monte
Carlo algorithm and was originally used to simulate the
annealing process used in metallurgy. This gives the simulated
annealing algorithm random characteristics. Successive runs of
the algorithm will produce different results. The optimization
steps are presented in Algorithm 1.

The algorithm takes random walks through the design space
starting from the middle point of each design parameter, look-
ing for points with low energies. In each step, the probability
of taking a step is determined by the Boltzmann distribution,

p =

(
e

∆TPC

T

)
if ∆TPC

is high, and p = 1 when∆TPC
is low.

Therefore a step will occur if a new value is better than the
previous one. If the new value is worse, the transition can still



Algorithm 1 Simulated-Annealing Based Optimization of the
Clamped-Bitline Sense Amplifier.

1: Initialize iteration counter:counter← 0.
2: Initialize temperatureΘ.
3: Initialize Cooling Rate.
4: Start with an initial solutionĈBSAi.
5: Calculate the FoMs for̂CBSAi using the Kriging models.
6: Consider the objective of interestTPCi

.
7: result← ∆TPC

← TPCi
.

8: while (∆TPC
! = 0 ) do

9: counter← max Iteration.
10: while (counter > 0) do
11: Generate random transition from solution̂CBSAi to

ĈBSAj .
12: Calculate the FoMs forĈBSAj using the Kriging

models.
13: if (TPCj < result) then
14: result← TPCj .
15: ĈBSAi ← ĈBSAj .
16: else
17: ∆TPC

← TPCi
− TPCj .

18: if ( ∆TPC
< 0, random(0,1)< e

∆TPC

T ) then
19: TPCi ← TPCj .
20: ĈBSAi ← ĈBSAj .
21: end if
22: end if
23: counter← counter − 1.
24: end while
25: Θ← Θ× Cooling Rate.
26: end while
27: return result and ĈBSAi.

occur, and its likelihood is proportional to the temperature T
and inversely proportional to∆TPCi

.
The finalized values for the design are shown in Table I.

TPC has been reduced by 21.54 % whilePSA was increased
by 5.32 %.TSD and VSM was also improved by 12.04 %
and 4. 36%, respectively. The area for the final layout design
was also increased by 5.15%. The simulated annealing based
algorithm finds optimized values in 2.78 ms compared to
a run of 45 minutes for an exhaustive search optimization.
In other words, the proposed design flow could speedup the
optimization process by a factor approximately106×.

VIII. C ONCLUSIONS ANDFUTURE RESEARCH

This paper presented a new methodology that uses Kriging
metamodels and the simulated annealing algorithm for sense
amplifier optimization. Kriging methods generate metamodel
functions that accurately capture the global design space while
taking into account the spatial autocorrelation of the input
design parameters. Comparisons with exhaustive simulations
show that Kriging predicted models are very accurate with
very low RMSE and highR2. The simulated annealing based
algorithm optimized the generated metamodel function for

the prechargeTPC FoM, improving it by 21.54%. In future
research, the methodology will be extended to multiple design
parameters and multi-objective optimization algorithms.
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