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Abstract—The drive for ultra efficient and low-cost portable The current paper proposes a design optimization flow
devices continues to push the need for low power circuit degins. methodology incorporating a stochastic gradient descased
The increasing transistor density and complexity of IC degins (SGD) algorithm. The SGD algorithm helps to improve the

aggravates the task of producing efficient low power and low S . e
cost design. The short time to market (TTM) also increases i8 optimization time and also eliminates the problem of local

burden on designers, as optimal designs have to be producedOptima. The design flow is presented using a 45 nm thermal
in an ever decreasing amount of time. This paper presents sensor as case study circuit. The thermal sensor is a tritica

an optimization design flow methodology that optimizes the component of SoCs, even more so with the increasing power
power (accounting leakage) consumption of integrated ciuits  gangity of modern circuits. Over 50 % of integrated circuit

(ICs). The design flow incorporates a stochastic gradient deent : . .
(SGD) based algorithm and is implemented using a 45 nm (IC) failures can be attributed to thermal related issugs [3

thermal sensor circuit as case study. Power-efficient higeensitive  1he the"ma| sensors are needed for effective .therma| manage
thermal sensors are important to reduce the burden on the ment which helps to reduce power consumption and increase
systems or circuits that they are implanted to sense. Expements  performance.

are performed to apply the proposed design flow methodology * g hoyel contribution of this paper is the presentation
on the thermal sensor with the power consumption as the

design objective while keeping the temperature resolutioras a ©f @ desigr! optimization ﬂOYV _mOQGL which inc_orporqtes_an
constraint. Experiments on full-blown (RCLK) netlist of sense SGD algorithm for the optimization of a design objective

amplifier show a reduction in power consumption by 38%. under constraints. The SGD algorithm has been modified to
Keywords-Optimization, Stochastic Gradient Descent, Nano- reiteratively have restart points to eliminate the locairapm
CMOS, Low Power, Design Flow, Thermal Sensor problem. The proposed algorithm has been applied on a 45nm
sensor design at the silicon level.
I. INTRODUCTION The rest of this paper is organized as follows. A brief review

of selected related research is presented in Section lleta S
The market desire for ultra efficient and low cost mobilggn |, a description of the case study circuit is preseinfEhe
devices continues to drive the needs for low power IC deSiQ{ﬁYoposed design optimization flow methodology is presented
However with the increasing transistor density and conifjlexin section IV. The experimental setup and results are pteden

of System-on-Chip (SOC) designs, it is becoming more amgl section V. In Section VI, conclusions and future research
more difficult for designers to produce optimal designs efffirections are discussed.

ciently. The complexity of designs and the number of design
parameters makes an exhaustive exploration of the design I
space to find optimal designs infeasible. To overcome this
restriction, intelligent techniques and methods have hesed  Optimization algorithms are used extensively in IC design
during the design process to reduce the cost of produciagd have been well researched and documented. A few promi-
optimal designs. Optimization techniques, a critical pafrt nent algorithms include evolutionary algorithms, genatio-
circuit design have been researched and are ubiquitous [1]ithms, swarm algorithms, simulated annealing, tabu $earc
Common techniques include gate ordering, transistorgizirand geometric programming [4], [5], [6], [7], [8]. Gradient
clock gating, architecture analysis etc., and can be applie descent algorithms have been used in many optimization
different levels of abstraction including circuit, logioehav- problems. In particular, Stochastic Gradient Descent (5GD
ioral and system level. Relatively recent techniques apple has also been applied in optimization methods. SGD differs
to designs in the deep nanometer region also include thefusérom ordinary gradient descent by estimating the gradient
dual threshold voltage and thickness oxide [2]. Populai-optlescent at random decision points instead of going down
mization algorithms have been combined with most techriguiéirough the whole parameter set. In [9], a comparison of
to improve the optimization process. However, with inciegs optimization methods including three variations of SGD has
design complexities, and conflicting design objective® tlbeen presented. Its has the advantage of decreasing tlch sear
research of optimization algorithms is still very impoitan  time by reducing the gradient computation time. In [10], a

. RELATED RESEARCH



form of gradient descent for multi-objective optimizaties the first inverter has been modified as a NAND gate and used
proposed. to enable the ring oscillator operation.
Although the use of SGD in VLSI systems have been

reported previously [11], [12], [13], it has not been apglie ctrl Fout
as an optimization method for the circuit itself. In [11]2]1 wo w. Wo —»
the SGD algorithm is implemented to optimize an adaptivé

optical system. In [13], SGD is used as a training optimaati
for implementation on VLSI neural networks. Fig. 2. Block Diagram of the Ring Oscillator.

The design of on-chip thermal sensors has been well re-
searched including design for accurate temperature e@tima The oscillation frequency of the ring oscillator is expegbs
and robust performance [14], [15], [16]. In [15], a class dfising the following expression:
thermal sensors based on Differential Ring Oscillators QPR 1
is introduced. In [17], a low power thermal sensor has also Jose =
been proposed. It employs a an oscillator based on RS registe
based structure. In [16], a statistical approach is taken \éhere n is the number of stages used in the oscillator and
compensate for the effect of noise, process variationdangd t,rz andt,yr are the low-to-high and high-to-low prop-
fluctuations on the thermal sensor. In [18], [19], a propos@gation delays, respectively. The propagation delays &n b
PTAT current source is proposed. The proposed circuit usg¢pressed as follows [20]:
the ratio between the drain currents of two current source —20L Vi o

1)

n(tpra + tpar)

1.5Vad + 2Vip

transistors operating in the subthreshold region whichT&TP  tprr = 3 In .
. -Vt — Vi .

for thermal sensing. An effort to reduce the effect of preces o (Vaa = Vip)* * ip(Vaa = Vip) 0-5Vas )

variation and noise on thermal sensors, similar circuiteeha 2C1 Vin, Cr, 1.5Vyq + 2V4,

been prop(_)sed in [20]. The thgrmal sensor de;ign used a¥’a’ = bon(Vaa — Vin)2 ' kp(Vaa — Vin) n 0.5Vid
study in this paper is closely similar to the design presgnte

in [14]. The thermal sensor used is implemented using tNéhere C;, is the capacitive load and, and x, are the
conventional ring oscillator topology in contrast to theremt transconductance values given as follows:

starved topology. The thermal sensor is also not operated in W

the subthreshold region which leads to a decrease in freguen Kn/p = Mncoz(f)n/p. (4)

with increasing temperature. We do not also include the

frequency divider and multiplexer. In equations 1 - 3, the threshold voltafje and mobilities
A summary of related sensors is shown in Table I. Th@a'® the factors most sensitive to temperature fluctuatiimsy

provides a broad perspective of the state-of-the art. are given in equations 5 and 6, respectively, as below [21]:

1. THERMAL SENSORDESIGN FOR45 NM Vi(T) = Vi(To) + o, (T = To), oy, = =0.5 = 3.0mV/°K.

The thermal sensor design used to demonstrate the proposed T % )

design flow optimization is briefly discussed here. The 45 nm w(T) = uo (?0) ya, =—1.2-2.0. (6)

thermal sensor shown in Fig. 1 uses a ring oscillator as a
major component for thermal sensing. The circuit also usesAa increase in temperature leads to an increase in the prop-
combination of 10-bit binary counters and 10-bit regisfers agation delay which translates to a decrease in oscillating
accurately expressing the output. The operational frecquef  frequency.

the ring oscillator is very sensitive to ambient tempemtamd  The 10-bit binary counter is shown in Fig. 3 and consists of

thus the output frequency fluctuates in response to theteffgk flip-flops, while the 10-bit register shown in Fig. 4 is used

from surrounding temperature. to store the value from the counter and is also implemented
with JK flip-flops.
ctrl Ring Oscillator Fouh ¢k Binary Counter The thermal sensor shown in Fig. 1 was implemented using
|_ reset  Cout a 45 nm CMOS technology library. The thermal sensor design
10 is characterized to sense temperatures between 0°C an@.100°
in 10b The Sys clk signal is used to enable the thermal sensor. When
Sye_clk | | Register10b ouli—<—p Out  +ha qus clk turns to logic zero, the ring oscillator is disabled,

the counter is also reset and the register also stops sdwng t
Fig. 1. Block Diagrammatic Representation of the ThermaisBe System. count, storing the last count value it had before 8ys clk
was set to logic "0”. The binary counter is used to count the
The ring oscillator is shown in Fig. 2. It consists of a cagcadrequency difference between the ring oscillator output e
of an odd number of inverters that are connected in a loggstem clock. The count is stored in the 10-bit register and
leading to an unstable state which creates the oscillatiims calibrated to measure the temperature change. The physical
ring oscillator shown in Fig. 2 has a total of 15 inverterst budesign of the thermal sensor is shown in Fig. 5.



TABLE |
COMPARISON OFRELATED THERMAL SENSORS

Sensor Design[ Average Power| Temperature Resolutio] Temperature Rangg Process Technology Area
5] 25 WW 2°C 40 — 150°C Z5nm =
17 0.9 uW 1°C 180 nm 0.2 mm?
18 3.8 uW - -40 — 125°C 180 nm 1000 pm?
19 5.8 uW — -20 — 100°C 0.35um -
20 0.09 uW - - 0.13 um 0.0036mm?
[14] 0.95 W 0.04°C 8- 85°C 0.13 um 0.04mm?
This paper 379.4 W 9.42 MHz/°C 0 — 100°C 45 nm 1389.31um?
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Fig. 4. Block diagram of the 10-bit register.

The performance and accuracy of the physical design is
degraded when compared to the schematic design. This is
expected due to parasitic effects from the layout. Table I
shows a comparison between the schematic and physical
design. Power consumption is increased by 29% while the
sensitivity decreases by 44%. This circuit exhibits a Imea
dependence of oscillation frequency on junction tempeeatu

as shown in Fig. 6.

TABLE Il
CHARACTERIZATION OF THE45NM CMOS THERMAL SENSOR
Design Average Sensitivity Area
Power (Prs) (Trs) (wm?)
Schematic 293.1uW 16.88 MHz/°C -
Layout 379.4 uW 9.42 MHz/°C | 1221.37
% Change +29% -44%

As the temperature is increased, the frequency decreases.

—| Buffer I7

Block diagram of the 10 bit binary counter.
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Fig. 5.

Physical design of the 45 nm thermal sensor.
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Design Optimization Flow

The schematic frequencies range from 0°C= 5.924 GHz to

100°C= 4.236 GHz. Assuming a 6 GHz max clock rate for Fig. 7. The Proposed design optimization flow.

the ring oscillator, and a 10 bit counter (1024 max count) the

effective resolution is calculated by dividing the tempera

range by the number count 100°C/1024 bit which gives a

0.097°C/bit resolution. The range of frequency output sal

severely degraded as also seen in Fig. 6. The range drgpsSchematic (LVS) tests. From the physical layout, a fully
to 3.867 GHz to 2.986 GHz. The resolution can also Hgarasitic netlist - resistance, capacitance and self antdiahu
specified in terms of GHz/°C to reflect the degrading effect ¢iductance (RLCK) is extracted to ensure the simulationehod
parasitics from the physical design. There is a 47.8% charigeas silicon accurate as possible. The parasitic netligten

is frequency/temperature resolution between the schermiati parameterized with design and process parameters, ingludi

physical design. The area of the layout is 1221.37>. the length and width of the transistord.,(V), threshold
voltage (), oxide thickness®,.), etc. It is only after the
IV. PROPOSEDDESIGN OPTIMIZATION FLOW optimization is complete that the physical design is redraw

In many of the reviewed circuits proposed, optimizationsing the parameters obtained from the optimization psces
of the circuits for minimal power consumption has been thehis ensures that the manual design of the physical layout is
goal. In striving to achieve optimal power consumption, théone at most twice, once before the parasitic extractiohef t
accuracy or sensitivity of the circuit is often compromis@d netlist and after the optimization process is complete.
new design flow methodology that uses a stochastic gradient

descent based algorithm is proposed, as shown in Fig. 7. With a fully parameterized parasitic aware netlist and a
chosen performance objective, a stochastic gradient desce

A. Design Optimization Flow based algorithm is used to optimize the circuit to obtain the

The first step in the design flow process is to create tfi@eal optimized design. The stochastic gradient takes in as
baseline schematic design of the circuit that meets thengivieput the parameterized netlist, the design objective #ed t
design specifications. For the case study circuit we impigmerange of parameter values for the design. The output of the
the thermal sensor, common design objectives include povegrtimization algorithm is the design variable points thiseg
consumption, temperature resolution, and temperaturgeranthe optimal performance objective. The optimization pssce
After the schematic design has been created, a set of gerreiterated until the target specifications are met as seen
formance objectives are identified (Figures-of-Merit, )M Fig. 7. Upon completion of the optimization process, thelfina
and a functional simulation is performed to ensure that tiparameter values are used to manually redesign the physical
circuit meets initial specifications. If the design speaifions layout. In using the parasitic extracted netlist, the pssce
are not met, the schematic is reiteratively designed ungihsures that the design flow is parasitic aware, and the final
the specifications are met. The next step is to create thleysical design is implemented to reflect more silicon aateur
physical layout design of the circuit. The physical layoutesults. A detailed discussion of the SGD based algorithen ar
is validated with Design Rule Checks (DRC), and Layouiresented in Section IV-B.



Algorithm 1 Stochastic Gradient Descent Based Algorithm

B. Sochastic Gradient Descent
1

The stochastic gradient descent (SGD) algorithm is a varia:
tion of the descent based algorithms that utilize the gradié

functions to search for optimal values. The stochasticigrad 3
descent is a cost function optimization algorithm that hearb 4:
implemented for many different applications. SGD algorith 5:
could be applied to optimization problems for a functjf(x), 6:
wherex is the vector of parameters. An example 0ptimizati0n7:
problem is presented as follows: i:
MinimizePrgs(w), wherdw) = W,,, W,,, L,,, L,,, Vi,... (7) 10
11:

The basic form of the SGD algorithm is given as [22]: ;..
Wp4+1 = Wnp — ’YnVPTS (wn) (8) ii

Where w,,, the parameter which minimizes the objectivels:
function, is to be estimatedv Prs(w,,) is the gradient or 16:
17:
optimized. is a user defined factor that controls the step sizes:
of the descent. It is also usually referred to as the learning:

derivative w.r.t.w,,, of the objective functionPrg(w) to be

N < Max_Iter

2: Choose random variable,, w,

Calculate FOMPrg(wy)

while ||Prs(wp41) — Prs(wy)|| > € do
Choose a decreasing, (generally%)
EstimateV Prg(w,,) using Prg(w),)
ComDUtexn-ﬁ-l = Tn — YV Prs (xn)

end while

W« {wn, Prs(wy,)}

Resetwy, wy

if (wo) within range of W then
Resetwy, wy

else

N+ N-1

restart search algorithm
end if
repeat

algorithm search
until N = equals 0

rate. The choice ofy is arbitrary and is commonly set a}Ls
or some other decaying function with respectritowheren
is the number of iteration steps. A very smallwill result in

smaller steps and will increase the convergence time, vehilgygorithm, we improve the efficiency by monitoring the set of

biggery may lead to an unstable process. random points to limit the range of parameters picked to only
The SGD is very similar to the gradient descent, th@ose whose paths have not been traversed. This cuts down

difference being that the gradient of the objective funttiogn the optimization algorithm time by eliminating reduntian

Prg(w) is computed by an estimation, using a subset of th@arches, i.e. searches that will produce already storémiap
parameter vector which is randomly chosen in each iteratigp discarded results.

step. The estimation of the gradient in each iteration step
greatly reduces the computation costs and simultaneously V. EXPERIMENTAL RESULTS
speeds up the optimization process. This characteristiesna To demonstrate the efficiency of the proposed design opti-
the SGD very suitable for computational expensive simoitesti mization flow, it is applied to the optimization problem ogth
and functions which are not easily differentiable. 45 nm thermal sensor design which was discussed in section

The SGD is susceptible at being stuck in a local minimuil. Initial design parameters for the thermal sensor are as
and is thus effective for local optimization. We propose fllows: V,; = 1.5 V, and nominal values of 45 nm andiv/,,,
technique that reiteratively restarts the algorithivh times, W, of 120 nm and 240 nm, respectively, are used. The design
while memorizing the local minima found and the range gémperature range was 0 — 100°C. After the schematic and
parameters traversed. When the algorithm is restarted avitiphysical baseline designs were completed to specifications
new random point, it checks to make sure it is a new poitiie netlist was extracted with parasitics and paramettrize
which has not been searched, thereby eliminating redund@aidence Ocean scripts were written and the simulations were
searches. After the algorithm has been ri¥h times, the driven by MATLAB using the parasitic netlist extracted from
optimized point is selected from the set of local minima. the physical design.

The proposed algorithm is shown in Algorithm 1. The optimization goal for this experiment was to reduce

The algorithm shows the modifications to the traditionand optimize the power consumption using the temperature
SGD in optimizing an objective outputrs(w) as a function resolution as an optimization constraint. The width of the
of design parameters. First, the maximum iteration numbertransistors was used as the design parameter set to beexkplor
is set asV, then a random starting point is chosen to start thehe SGD algorithm in Algorithm 1, was implemented in
optimization process. For each iteration step in lines 48 MATLAB and was used to reiteratively simulate through the
set of solutions is stored in vectd¥, also marking traversed design with update inputs of transistor widths. To reduee th
paths. The algorithm is restarted, .i.e. reiterated thindirges possibility of the optimization process being stuck in aalloc
4-16 until the max iteration is reached or some other stopinimum, the algorithm was run witliv = 20, each time
criteria are met. When a new random point is to be pickestarting with a random value of transistor width. The result
it checks to make sure that point has not been searched.ohtthe optimized designs compared to the baseline design
the end of the algorithm, the optimized design objective &re shown in Table Ill. The power consumption has been
chosen from the minimum of values in the vector In this reduced by 38% with an optimal parameter pointl&f, =

20: return the lowest couplev,,, Prs(w,) found.




153 nm. The power consumption for this design is relativefgo] P. A. N. Bosman, “On Gradients and Hybrid Evolutionarjgdrithms
higher because it includes the power consumption from the
counter and the register. The designs in [14] have also b ef
implemented in the subthreshold region which significantly

reduces the power consumption. A 13.75% increase in the
area of the final physical design is incurred. This is becauag]
an increase of 27.5% increaselif,.

TABLE Il
EXPERIMENTS OVER THE45NM CMOS THERMAL SENSORCIRCUIT.

Design Average Power Sensitivity Area

(Prs) (Trs) (um?)
Schematic 293.1uW 16.88 MHz/°C -
Layout 379.4 uW 9.42 MHz/°C | 1221.37
Final 181.8uW 44.2% 1389.31
% Change 37.97% - 13.75%

VI. CONCLUSION

(23]

[14]

[15]

presented. A stochastic gradient descent based optionzati

algorithm was incorporated into the design flow. The modified”’
SGD algorithm is relatively fast and efficient and elimirgate

local optima convergence problems. The proposed algoritiil
was tested on a 45 nm thermal sensor design to optimize
its power consumption. The power consumption was reduced
by 38% while maintaining the resolution of the thermdt®l
sensor at 9.42 MHz/°C. This compares very well to selected
optimizations of thermal sensor designs. In future researc

the proposed methodology will be extended to multi-objecti [20]
optimization schemes.
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