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Abstract—With the continuous progression of semiconductor
technology, nanoscale effects have become a persistent issue in the
design of analog/mixed-signal (AMS) circuits. The cost of explo-
ration and optimization of the design space increases to infeasible
levels with conventional design methodologies. Different model-
ing techniques to reduce the cost of design exploration, while
ensuring the accuracy of such models, have been introduced and
continue to be a research problem. In this paper, a geostatistical
inspired metamodeling and optimization technique is presented
for fast and accurate design optimization of nano-CMOS circuits.
The proposed design methodology incorporates a simple Kriging
based metamodel which efficiently and accurately predicts design
performance. The metamodel (instead of the circuit netlist) is
subjected to a Gravitational Search Algorithm for optimization.
This design methodology is applicable to AMS circuits and is
illustrated with the optimization of power consumption of a
45nm CMOS thermal sensor. The method improves the power
performance of the thermal sensor by 36.9% while reducing the
design optimization time by 90% even with 6 design parameters.

Keywords-Nano-CMOS, Geostatistics, Kriging methods, Grav-
itational search algorithm, AMS design flow.

I. INTRODUCTION

The demand for smaller, portable, more powerful and ef-
ficient consumer electronics continues to drive the aggressive
scaling of semiconductor technologies. However, as the scaling
continues, designers are not only faced with the challenges of
subthreshold leakage and power density, but also with the ef-
fects of process variation. Accurate and exhaustive simulation
of design models has become considerably computationally
intensive and time consuming due to the increase of design and
process parameters to be considered. Current techniques used
to reduce simulation time include the use of metamodeling
functions [1], [2], [3], [4] and performance estimation through
Monte Carlo simulations.

Metamodeling functions are approximations of performance
objectives of the simulated design model with respect to design
parameters [1]. Low-order polynomial functions and artificial
neural network models are common metamodeling techniques.
The accuracy and efficiency of a metamodel depends on the
technique used in creating it [4]. For instance, metamodels
based on low-order polynomial regression functions deliver
accurate circuit descriptions, but are not efficient when used
for global optimization [2]. When predicting the objective
function, the regression models assume the effects of process
variation are purely random and approximate the error equally

across the design space. However, in nano-CMOS technology,
this is not the case. The effects of process variation are not
purely random, but they are also strongly correlated. Kriging
based metamodels which are based on geostatistical means,
take into account by their weighting system the correlation
effects between the design parameters. Kriging metamodeling
techniques which account for the correlation effects of process
variation, provide a robust metamodel which is process vari-
ation and yield aware, thus giving designers a greater control
over the design parameters.

With available design metamodels, designers also face the
challenge of effectively exploring the design space. In high di-
mensional parameter designs, as is the case with nano-CMOS
circuits, exhaustive search space optimization techniques are
unrealistic as the search space increases exponentially with
problem size [5]. Different optimization algorithms utilized for
circuit design optimization include genetic algorithms, swarm
algorithms, simulated annealing, tabu search and geometric
programming [6], [7], [4]. To mitigate the above issues, in the
current paper, a novel AMS circuit optimization methodol-
ogy is proposed which incorporates a geostatistical-inspired
metamodel technique with a gravitational search algorithm.

The rest of this paper is organized as follows. The major
contributions of this paper are outlined in Section II. A
summary review of related research is presented in Section
III. In Section IV, a brief overview of Kriging modeling and
in particular simple Kriging is discussed. In Section V, the
background and theory of the Gravitational Search Algorithm
is described. The overall proposed design flow in presented
in Section VI. In Section VII, an illustration of the design
flow is presented on the design optimization of a 45 nm
thermal sensor. The conclusions and future research directions
are presented in Section VIIIL.

II. NOVEL CONTRIBUTIONS OF THIS PAPER

In this paper, the use of geostatistical methods is intro-
duced in a design flow methodology for mixed-signal circuit
design optimization due to their capability of accounting for
correlation effects of the design parameters to produce robust
and accurate metamodels. A gravitational search algorithm is
proposed to employ both exploitative and explorative aspects
of population based algorithms effectively using gravity rules.
A case study circuit, a 45nm thermal sensor is used to
illustrate the performance of the proposed methodology. With



the proposed methodology, the optimization of the power
consumption with the thermal sensitivity as a design constraint
is illustrated. Optimizing the power consumption in thermal
sensor circuits is crucial to the operation of the circuit,
as higher power dissipation leads to increased temperatures
resulting in performance degradation. The summary of the
novel contributions of the current paper to the state-of-the-
art are the following:

1) An AMS design flow methodology incorporating simple
Kriging based metamodels.

2) Application of the Gravitational Search Algorithm
(GSA) for AMS circuit optimization.

3) A 45 nm thermal sensor circuit power minimization with
the thermal sensitivity as a design constraint.

III. RELATED PRIOR RESEARCH

In [8], [9], a study and comparison of metamodeling tech-
niques including polynomial regression, artificial neural net-
works (ANN), radial basis Low-order polynomial regression
techniques provide fast and efficient accurate metamodels but
do not perform well in global optimization problems [2], [10].
In [7], a technique which applies geometric programming to
polynomial equations deduced from circuit designs improves
global optimizations. Artificial neural networks are used in
[10], [11] for the metamodeling of discrete stochastic systems.
In [12], [13], Kriging techniques have also been used for
circuit design.

Design optimization remains a prominent issue especially
for analog and mixed-signal circuits. In [6], a comparison
of simulated annealing, genetic algorithm and gradient based
algorithm is presented. In [14], a swarm algorithm technique
using orthogonal optimization techniques is presented. Fast
optimization algorithms based on artificial bee colonies is
presented in [15].

The optimization of thermal sensor design is also a well
researched topic. The need for low power designs without
degrading the accuracy of temperature estimation poses a
problem. A thermal sensor design based on differential ring
oscillators (DRO) was proposed in [16]. In [17], a methodol-
ogy which incorporates statistical techniques into the design
process aids the estimation of temperature effects on the
circuit. In [18], a design which uses a reference transistor
independent of ambient temperature to reduce its effects on
accuracy is proposed.

IV. PROPOSED SIMPLE KRIGING METAMODELING

The simple Kriging metamodel generation flow is presented
in Fig. 1. Latin Hypercube Sampling (LHS) is used to ac-
curately obtain the sample points from the complex design
space to be used for the Kriging metamodel generation. LHS
is selected to cover all input dimensions simultaneously and
thus improving on the variance over Monte Carlo distributions.
In [4], a comparison of sampling techniques show that LHS
generates more accurate models over random sampling points.
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Fig. 1. The proposed simple Kriging metamodel generation flow.

The use of Kriging was proposed in [19] as a stochastic
approach to compensate for the deterministic nature of com-
puter simulations. Kriging techniques use weighted averages
which are unique to each predicted point. The weights are a
function of the correlation between the sampled data points
and the point to be estimated. The general expression of a
Kriging model is as follows:

L
y(xo) = ZAij(x) +2(x), (1)

where y(xg) is a stochastic function which predicts the
response at the design point (xo). {B,;(x),j=1,--- ,L}isa
specific set of basic functions over the design domain Dy, A;
are fitting coefficients (weights) to be determined and z(x) is
a stochastic process with zero mean and is based on a spatial
correlation function called the variogram, given by:

r(s,t) = Corr(z(s), z(t)). ()

The variogram is used to derive the Kriging weights, A;. The
autocorrelation of the design points is characterized by the
covariance function [20]. The weights are chosen so that the
Kriging variance is minimized.

The simple Kriging method is used in the current paper.
It assumes a constant and known mean over the global domain.
Assuming that there are n sample points, of variable z, to
predict a new point y(xg), the weights A are estimated by:

A1 y(w1,20)
=171 : . 3)
An Y (X, x0)
T" is the covariance matrix of the observed points given by:
Y(z1, 21) V(z1, @)
= : : . 4)
V(@n, 1) V(@n, Tn)

Where (21, 22) = E (|2(21) — 2(z2) ).

A MATLAB toolbox developed for the implementation of
Kriging models [21] is used in this paper to predict the output
response. It takes in n sample points with the observed output
and parameters to specify the Kriging technique and variogram
model along with a set of design points to be predicted.
The output is the predicted response with an estimated error.



The generated metamodels must be validated before use for
design exploration or optimization. Validation tests ensure the
accuracy of the metamodel and are usually done with addi-
tional random points through statistical analysis. The metrics
Mean Square Error (MSE), Root Mean Square (RMSE) and
the correlation coefficient R? are used. A lower value for
both MSE and RMSE indicate a more accurate model, while
a higher R? value implies a more accurate model. Sample
performance points are produced from SPICE simulations
using the LHS generated points.

V. PROPOSED GRAVITATIONAL SEARCH ALGORITHM

The gravitational search algorithm (GSA) was introduced in
2009 [5] as a new heuristic optimization algorithm based on
the newtonian laws of gravity. The proposed GSA algorithm
models the search agents as mass objects. Heavier masses
correspond to better performing agents (i.e. design points with
superior performance objectives.) As agent masses become
heavier, they attract other agents towards them by gravity
force, hence pulling search agents towards an area with a likely
optimal solution. Agents which attract other masses become
heavier and move slower, concentrating in a search area with
a likely optimal solution while lighter masses are able to move
faster exploring other search locations. Assume a system with
N denoting the number of masses (search agents/nodes). The
location (design point) of the ith mass can be expressed in
functional form as follows:

X; = (z},2?,... 28

i i

Lar)yfori=1,2,...,N, (5

where x¢, presents the position of the ith agent in the dth
dimension, and n is the number of dimensions.
The attractive force on a mass object ‘¢’ from a mass object

(33

4’ is given by:

o300 1) . o

R0 = G (M

Where M,; and M, are the active and passive gravitational
masses of objects ‘j° and ‘0> respectively, G(¢) is a gravita-
tional constant at time t, and R;; is the Euclidean distance
between the two objects. The mass of each agent is updated
with the following expressions:

mi(t)
M;(t e T A—— 7
R ST ”
mi(t) fit;(t) — worst(t) 8)

best(t) — worst(t)’
where fit;(t) represents the best solution found in each
iteration. Thus, the total force acting on an object is:

N

> rand;Fi(#), 9)
j=1.j7
where rand; is a random number between 0 and 1. The use of
the random number adds a stochastic flavor to the algorithm.

The mass locations which find optimal solutions gradually
attract masses with poor performance, effectively increasing

the chances of exploitation but also ensuring exploration of
the design space. A convergence of the masses by the heaviest
mass presents an optimal solution of the search space. One
appealing feature of the GSA is that it is memoryless, it
does not need to remember previous best solutions but still
guarantees near-optimal solution by virtue of mass acquisition.

The pseudocode of the GSA is shown in Algorithm 1. In
the pseudocode, steps 1 - 3 sets up the optimization flow, by
setting up the maximum number of iterations and the number
of mass agents to use for optimization. Step 4 sets up the
location of each of the search nodes with generic masses.
Steps 7-14 consist of the main section which analyzes each
search node per iteration and updates the mass, velocity and
location, reiteratively until an optimal solution is found or the
termination criteria met.

Algorithm 1 Proposed Gravitational Search.
1: Initialize iteration counter: counter < 0.
2: Initialize max iteration M ax;ier.
3: Initialize number of search agents 7 gravity constant G,
and velocity v.
: Generate n random search nodes (design parameter sets).
: Consider the objective of interest Powerrg,.
counter < max_Iteration.
: while (counter < Maz;ie,) do
Evaluate objective of interest (Powerrg,) for each
search node.
9:  Update best and worst solution per function objective.
10:  Update the gravity constant G.
11:  Calculate M and a for each search node.
12:  Update v for each search node.
13:  Update search nodes by applying velocity on M.
14:  counter < counter + 1.
15: end while
16: return bestsolution.

VI. OVERALL DESIGN OPTIMIZATION FLOW

The proposed overall design optimization flow is shown in
Fig. 2. The design process incorporates a geostatic inspired
metamodel parasitic aware design that is optimized using the
gravitational search algorithm. The process starts with the the
designing the circuit schematic to meet design specifications.
Once the circuit is complete, a simulation is performed for
functional verification, the design is also checked to ensure that
it meets specifications. The circuit is redesigned if it does not
meet specifications. After the circuit schematic is completed,
the physical design is also drawn. Design Rule Check (DRC)
and Layout versus Schematic (LVS) is performed on the
completed physical design. The parasitic netlist is then fully
extracted (R-resistance, L-inductance, C-capacitance, and K-
mutual inductance). This parasitic netlist is fully parameterized
with the design variables. The output of the physical design is
usually degraded by the parasitic effects. The parametrization
of the extracted netlist allows for easy and efficient redesign
of the layout without having to manually resize the transistors.
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Fig. 2. The proposed overall design optimization flow.

VII. EXPERIMENTAL RESULTS

An illustration of the proposed design optimization flow is
presented with the power optimization of a 45 nm thermal
sensor used as a case study circuit. The tools used for the
experimental set were the schematic and layout editors on the
Cadence Virtuouso platform. MATLAB was used to imple-
ment the metamodel generation and optimization algorithm
using the MATLAB toolboxes, mGstat [21], and GSA [5].

A. The Case Study Circuit: 45nm Thermal Sensor

The thermal sensor used to illustrate the efficiency of the
proposed design flow is briefly discussed. The system-level
block diagram, which consists of three 3 major components,
is shown in Fig. 3(a) [22].

The 10-bit binary counter consists of JK flip-flops. The
10-bit register stores the value from the counter and is also
implemented with JK flip-flops. The ring oscillator (RO)
consists of a cascade of an odd number inverters connected in
a loop. The RO used has 15 stages. The oscillation frequency
is expressed as:

1

n(tprm +tpmr)’

f osc = (10)
where n is the number of stages used in the oscillator and ¢,,7, i
and t,p; are the low-to-high and high-to-low propagation
delays respectively. In an ideal condition, the propagation
delays can be expressed as [18]:
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(a) Block Diagram.
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Fig. 3. Design of the proposed 45nm CMOS based thermal sensor.

where Cp, is the capacitive load and &, and k, are the
transconductance values given as: Kk, = unCoz(%)n /p- In
Eqgn. 10 - Eqn. 12, the threshold voltage V; and mobility p
are most sensitive to temperature and are given by [23]:

Vi(T) Vi(To) + av, (T — To),

WT) = o (f) |

where, ay, = —0.5 — 3.0mV/°K and o, = —1.2 — 2.0. An
increase in temperature leads to an increase in the propagation
delay which results in a decrease of the oscillating frequency.

The technology library used for the implementation of this
thermal sensor is a 45 nm process design kit provided by
Cadence. The thermal sensor design is characterized to sense
temperatures between 0°C and 100°C. The Sys_clk signal is
used to enable the thermal sensor. When the Sys_clk turns to
logic zero, the ring oscillator is disabled, the counter is also
reset and the register also stops saving the count, storing the
last count value it had before the Sys_clk was set to logic “0”.

13)
(14)



The binary counter is used to count the frequency difference
between the ring oscillator output and the system clock. The
count is stored in the 10-bit register and calibrated to measure
the temperature change. The physical design of the thermal
sensor is shown in Fig. 3(b).

The performance and accuracy of the physical design of the
thermal sensor is degraded when compared to the schematic
design. This is expected due to parasitic effects from the lay-
out. A comparison between the schematic and physical design
is presented in Table I. The power consumption is increased by
29%, from 293 W to 379.4 uW. This circuit exhibits a linear
dependence of oscillation frequency on junction temperature
as shown in Fig. 4.

TABLE I
THERMAL SENSOR OUTPUT COMPARISON.

Design [ Average Power, (Prg)| Sensitivity, (Trs)] Area (um?)
Schematic 293.1 uW 16.88 MHz/°C -
Layout 379.4 uW 9.42 MHz/°C 1221.37
% Change 29.44% 44.2% -
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Fig. 4. Frequency response versus temperature for the thermal sensor.

The frequency response of the schematic design is 5.924
GHz (at 0°C) to 4.236 GHz (at 100°C). Assuming a 6 GHz
max clock rate for the ring oscillator, and a 10 bit counter
(1024 max count) the effective resolution is calculated by di-
viding the temperature range by the number count 100°C/1024
bit which gives a 0.097°C/bit resolution. The range of fre-
quency output is severely degraded by parasitics as seen in
Fig. 4. The range drops to 3.867 GHz (0°C) and 2.986 GHz
(1000°C). There is a 47.8% change is frequency/temperature
resolution by comparing the schematic design to the physical
design. The area of the physical design is 1221.37 pum?.

B. Results Analysis

In this section, the metamodel generation and the optimiza-
tion results of the thermal sensor design are presented. For this
design illustration, six design parameters were chosen, based
on the 3 components of the thermal sensor. The widths of the
NMOS and PMOS transistors in the RO are parameterized to

W Nyse and W P, respectively. The widths of the transistors
for the 10-bit counter and 10-bit registers are parameterized to
W Netr, WPty WNpoy and W P,.q, respectively. In generat-
ing the Kriging metamodels, 100 sample points were obtained
from the LHS. To evaluate the accuracy of the generated
metamodel, the metrics discussed in Section IV are used. The
accuracy tests for MSE, RMSE and R? metrics are shown in
Table II.

TABLE II
ACCURACY ANALYSIS OF THE SIMPLE KRIGING METAMODELS.
Metric Value
MSE 4.36 x 1018
RMSE | 2.09 x 10799
R? 0.9934

From the results in Table II, the Kriging metamodels are
sufficiently accurate with very low MSE and RMSE values of
4.36 x 107! and 2.09 x 107%. The correlation coefficient
R? is very close to 1 at 0.9934. The results validate the
efficiency of Kriging metamodeling by producing very accu-
rate metamodels while greatly reducing the simulation time
required. The total time taken for the metamodel generation
was approximately 30 hours, the bulk of this time being
the simulation time required for the sample points. The time
however is a factor of 10 lower than the approximately 300
hours required for an exhaustive simulation of the design.

In optimizing the thermal sensor, the GSA optimization is
applied to the generated metamodel with an initial number of
50 search agents and a maximum iteration of 1000 runs. The
design objective of the optimization is the minimization of
power consumption. The results of the optimization run are
shown in Fig. 5. From the optimization graph, it is seen that
the algorithm is able to reach an optimized solution of 184.7
pWin about 900 iterations.

- Optimization using GSA
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Fig. 5.

sensor.

GSA performance on Kriging metamodel for the 45 nm thermal

The final design parameters are shown in Table III. The
final optimized FoMs of the thermal sensor are provided in
Table IV. Comparing to the schematic baseline design, there
is a 36.9% reduction in power dissipation. From the final
design parameters, an area increase of about 45% is estimated,
judging from the increase in transistor size.



TABLE III
FINAL DESIGN PARAMETERS OBTAINED FROM THE KRIGING METAMODEL

OPTIMIZATION.
Parameter | Value
W Nosc 215 nM
W Pyse 140 nM
W Neir 313 nM
W Pty 121 nM
WiNyeg | 224 nM
WPy | 378 nM

TABLE IV

THERMAL SENSOR OUTPUT COMPARISON

Design [ Average Power, (Prg)| Sensitivity, (Trg)] Area (um?)
Schematic 293.1 uW 16.88 MHz/°C -
Layout 379.4 uW 9.42 MHz/°C 1221.37
Final 184.7 uW 9.42 MHz/°C 1770.98*
% Change 36.9% 44.2% 45%%*

VIII. CONCLUSIONS

In this paper, a new design optimization flow incorporating a
geostatistical inspired metamodeling technique (Kriging) and a
gravitational search algorithm for analog/mixed signal circuits
has been presented. The proposed methodology has been
illustrated with the design optimization of a 45 nm thermal
sensor design. Simple Kriging based metamodeling produces
very accurate metamodels while reducing the time for ex-
haustive exploration of design space by about 90%. A total
of six design parameters were considered for metamodeling
and optimization. Thus, the proposed method is scalable to a
large number parameters. The gravitational search algorithm
also optimizes the design by reducing the power consumption
by 36.9%. In future research, the metamodeling technique
will be extended for process variation effects and statistical
optimization.
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