
Metamodel-Assisted Ultra-Fast Memetic
Optimization of a PLL for WiMax and

MMDS Applications
Oleg Garitselov1, Saraju P. Mohanty2, Elias Kougianos3, and Oghenekarho Okobiah4

NanoSystems Design Laboratory (http://nsdl.cse.unt.edu)1,2,3,4

Department of Computer Science and Engineering 1,2,4 and Department of Engineering Technology 3

University of North Texas, Denton, TX, USA.1,2,3,4

Email-ID: omg0006@unt.edu1, saraju.mohanty@unt.edu2, elias.kougianos@unt.edu3, and oo0032@unt.edu4

Abstract—With CMOS technologies progressing deeper into
the nano-scale domain the design of analog and mixed-signal
components is becoming very challenging. The presence of
parasitics and the complexity of calculations involved create an
enormous challenge for designers to keep their design within
specifications when reaching the physical layout stage of the
design process. This paper proposes a novel ultra-fast design flow
that uses memetic-based optimization algorithms over neural-
network based non-polynomial metamodels for design-space ex-
ploration. A new heuristic optimization algorithm which is based
on memetic algorithms and artificial bee colony optimization
is introduced. The design flow relies on a multiple-layer feed-
forward neural network metamodel of the nano-CMOS circuit.
Using a CMOS PLL circuit it is shown that the proposed design
flow is flexible and robust while it achieves optimal design to two
different wireless specifications, WiMax and MMDS. Experimen-
tal results show that the proposed approach is 2.4× faster than
the swarm based optimization over the same metamodels.

Index Terms—Metamodeling, Neural Networks, Memetic,
Nano-CMOS, PLL, Modeling, Circuit Optimization

I. INTRODUCTION

Analog and mixed signal design processes usually involve
very complex simulations. While the technology progresses
forward, the design complexity has drastically increased,
mainly due to parasitic interconnect effects. Even though
simulation tools exist to help with the design, schematic-
level simulation cannot predict the physical layout complexity.
Hence,designers usually encounter problems in the post layout
stage that affect the design specifications and skew the output
of the designed system. The layout stage, which is a time
consuming process by itself, usually takes more than one
iteration and in the worst case the designer has to thoroughly
revise the design. Therefore in many cases the optimization
becomes suboptimal with designers trying to fit their design
into tight specifications and time to market deadlines.

There have been many attempts to simplify the design stage
to optimize the design back to specifications after the initial
layout. Circuit simplification, i.e. macromodeling [1] and [2],
uses simplified circuits that mirror the circuit’s behavior to

0This research is supported in part by SRC award P10883 and NSF awards
CNS-0854182 and DUE-0942629.

reduce its simulation time. It is usually conducted in the
same simulator tool, i.e. SPICE. This approach is mainly
used to reduce simulation time of the design block. It is
not parameter sensitive and therefore cannot be used for
optimization purposes. Modeling approaches for the circuit as
a system (metamodeling) are also common (e.g. regression [3]
and neural networks [4]). All these methods use mathematical
and/or statistical analysis with tools such as MATLAB to
create a formula or set of formulas to predict the output of
the system with given parameters. The parameters are usually
selected as device sizing, but it can be any other signal of
the circuit such as temperature or even an input signal. The
formula(s) later can be used to predict the system’s behavior
while adjusting the design parameters. Metamodeling is widely
used in other engineering fields, especially when simulation is
either expensive or time consuming.

This research focuses on eliminating the complexities of
the long optimization process. The metamodeling approach
that is used in this research is based on multilayer neural
networks and is shown that the process is very flexible to
multiple different design specifications. It is demonstrated on
a circuit that was initially built outside the required specs. Two
different specifications are used: 2.7 GHz for Multichannel
Multipoint Distribution Service (MMDS) and 2.5 GHz WiMax
applications and it is shown that the given design flow is
flexible and robust.

The rest of the paper is organized in the following manner.
Section II discussed the contributions of this paper and prior
related research. Section III introduces the proposed design
flow. Section IV presents the memetic-based optimization
algorithm. Section V discuses the neural networking meta-
models. Section VI presents the experimental results. Section
VII has the conclusions and future research discussions.

II. CONTRIBUTIONS OF THIS PAPER AND RELATED
RESEARCH

The novel contributions of this paper are as follows. A
neural network metamodel based design optimization flow for
analog/mixed-signal circuits is presented. A memetic algo-
rithm is used and is shown to perform considerably better than



the swarm optimization algorithm that was previously shown
to have good results on analog circuits. To the best of the
authors’ knowledge, this is the first memetic based heuristic
algorithm that utilizes the artificial bee colony algorithm at
the local layer. The metamodeling approach which is applied
to the physical design of a 180 nm CMOS phase lock loop
shows considerable speed up. The approach is also proven
to be flexible as the same circuit is brought to 2 different
specifications.

Memetic algorithm applications are very few in the VLSI
domain. In [5], a memetic algorithm is discussed for com-
puting the capacitance coupling in VLSI circuits. In [6], a
new sampling-based yield optimization algorithm based on
Memetic Ordinal Optimization is presented that improves
the yield efficiency of analog circuits. In [7], six different
parallel memetic algorithms are investigated for solving the
circuit-partitioning problem. In [8], a memetic algorithm is
presented for power, delay and area optimization during VLSI
partitioning. In [9], a memetic algorithm is presented to solve
the floorplanning problem.

These memetic algorithms are used on actual circuits, not
metamodels and also not specific to mixed-signal circuits
which is the scope of the current paper. Thus, the current work
significantly advances the state-of-the-art in analog/mixed-
signal circuit optimization.

III. PROPOSED ULTRA-FAST DESIGN FLOW:
MEMETIC-BASED ALGORITHM AND NONPOLYNOMIAL

METAMODELS

The novel ultra-fast design flow that uses a memetic-
based optimization algorithm for design-space exploration
over neural-network based nonpolynomial metamodels of a
nano-CMOS PLL is the focus of this paper. This ultra-fast
design flow encompasses three unique aspects: (1) the use of
accurate yet fast nonpolynomial metamodels instead of actual
circuit netlists for optimization, (2) the use of fast optimization
algorithms, and (3) the use of minimal number of manual
layout iterations to obtain design closure.

The proposed design flow using metamodels is shown in
Fig. 1. The physical layout of the baseline design is parame-
terized and the design space is sampled with two different data
sets, once for training samples and another for verification. A
neural network is created for each output data set of the design.
Computationally expensive optimization algorithms can be
applied using metamodels due to the their computational
efficiency and the optimized values are then used to adjust
the initial physical layout to create the near optimal design.
This design flow only uses 2 iterations for physical design,
minimizing the amount of time the designer needs to spend
on the circuit.

IV. THE PROPOSED MEMETIC-BASED ALGORITHM FOR
MIXED-SIGNAL OPTIMIZATION OVER METAMODELS

A. Background on Memetic Algorithms

In 1976, Dawkin [10] introduced the concept of a meme.
In 1989, the term Memetic algorithm (MA) was introduced

Baseline Design

Training DataVerification DataOutput Data

Multilayer Feed-forward Neural Network
(Hyperbolic Tangent -> Linear)

Memetic Optimization Algorithm

Optimized Parameters

Fig. 1. Abstract of the metamodeling design flow.

by P. Moscato [11]. The idea proposed a multilevel algorithm
that combines evolutionary algorithms for global optimization
with more powerful algorithms for the local search. As the
genetic algorithm approaches the global optimum, the local
optimizer is applied to each offspring before it is inserted
into the population. The unique aspect of MA algorithms is
that all chromosomes and offspring are allowed to gain some
experience, through a local search, before being involved in
the evolutionary process [11], [12].

A Genetic Algorithm (GA) is a computational model that
mimics biological evolution, whereas MA mimics cultural
evolution [10]. Several sets of parameters are common to
both MA and GA: population size, number of generations,
crossover rate, and mutation rate in addition to a local search
mechanism. In an MA, a population consists solely of local
optimum solutions [13].

B. The Proposed Memetic Algorithm

The proposed algorithm (Alg. 1) is a heuristic memetic op-
timization algorithm which includes an Artificial Bee Colony
optimization (Alg. 2) at the local layer. As memes progress
toward the goal on the global layer the local optimization does
the fine tuning of the result for memes. Each artificial bee
in the ABC algorithm acts as a comeme which is trying to
find a better solution within bounds of the local search with
the center as the main meme. The weight learning is used
to adjust the probability of meme movement control on the
global layer with the learning propagating from local to global
layer. Since each meme, initially, has equal chance of moving
in both directions the weights are used to teach memes to
move in the appropriate direction. The weights are adjusted
only when the meme reaches closer to the optimum, since
only then further direction can be estimated. The mutation of
the meme is simulated by applying the random location to
the meme instead of using the regular move with the learning
weighs being reset.



Algorithm 1 Global Optimizer for the Memetic Algorithm.
Initialize initial population.
Initialize weights.
count = 0.
while count < max iterations do

count=count+1.
Evaluate all individual populations.
for each individual in the population do

Select suitable memes.
Process with Alg. 2 for local improvements.
Replace selected meme with improved solution.
Receive information of the improved location for that
meme.
Adjust meme’s weights.

end for
Calculate probability for random selection operations =
prob.
if prob is crossover then

Swap selected meme’s parameters.
else if prob is mutation then

Replace selected meme with random solution.
Reset selected meme’s weights.

end if
end while
Return optimal value and location.

A modified version of the ABC algorithm, which is shown
in Alg. 2, was originally used in [14] and was found to
be effective on AMS circuits with use of metamodels. It is
applied as a local layer for the MA. More information on this
algorithm can also be found in the same work. Essentially
ABC is the artificial representation of the bee colony behavior
as bees try to find the best food source.

V. MULTILAYER FEED-FORWARD NEURAL NETWORK
BASED NONPOLYNOMIAL METAMODELING

A multiple layer neural network (NN) consists of inputs,
a nonlinear activation function in the hidden layer, and a
linear activation function in the output layer. This makes
multilayer networks very flexible and powerful due to their
ability to represent nonlinear as well as linear functions.
The multilayer network needs to have at least one nonlinear
function otherwise a composition of linear functions becomes
just another linear function as follows [15]:

ŷ =

d∑
j=1

βjbj (vj) + β0. (1)

The linear layer function has the following format:

vi =

s∑
i=1

wjixi + wj0, (2)

where wji is the weight connection between the jth component
in the hidden layer and the ith component of the input. The
nonlinear tanh activation functions used for the hidden layer

Algorithm 2 Local Layer Optimizer for the MA.
1: Initialize maximum iterations = maxi.
2: Receive initial meme = P and FoM.
3: Calculate boundaries for each parameter P(i)= [min,max] ±10%

for local optimization.
4: Define number of bees NumberBees.
5: Initialize the value for how close worker bees will disperse =

buffer.
6: Initialize bee matrix(3,NumberBees) = [workers, onlookers,

scouts].
7: Set bee matrix first half to be workers and other onlookers.
8: Initialize food sources.
9: while (counter ≤ maxi) do

10: for i=1 to NumberBees do
11: if bee is worker then
12: send worker bee to a random known food source.
13: Calculate FoM from neural networks.
14: if FoM is better than old then
15: Update result and location.
16: else
17: Convert bee to onlooker.
18: end if
19: else if bee is onlooker then
20: Calculate probability if the food source is good.
21: if probability is high then
22: Convert bee to scout.
23: Send scout to random location around each P, where

P=(P.min+random(1) × P.max) × buffer.
24: calculate FoM from neural networks.
25: if FoM is better than old then
26: Update result and location.
27: Convert bee to worker.
28: end if
29: end if
30: else if bee is scout then
31: Pick the best result = best r.
32: Send the scout to random location for each P, where

P=P.min+random(1)×P.max.
33: if FoM is better than old then
34: Update result.
35: Convert bee to worker.
36: end if
37: end if
38: if FoM is better than old then
39: Update result and location.
40: end if
41: end for
42: counter = counter + 1.
43: end while
44: Return result and location.

are sigmoid and were shown to work best for PLL circuit
previously [15]:

bj(vj) = tanh(λvj). (3)

The network training is performed to minimize the least square
criterion:

E =

n∑
k=1

(yk − ŷk)
2
. (4)

The input data set is generated from SPICE simulations.
It is the same for every metamodel and is generated using
Latin Hypercube Sampling (LHS). LHS supports any amount



of planes and is proven to work better than Monte Carlo due
to the more even distribution of points with still the random
factor that helps to detect nonlinearity. LHS divides each plane
(parameter) into Latin squares and randomly picks a point
from each square. Output is generated for each run from
SPICE simulations, saving each needed value to its own data
set. Hence, each metamodel will have its own target data set.
This work targets NNs that have single output with multiple
inputs.

Since the input data set has a large dynamic range, it is
desirable either normalize or standardize the input data. If not,
the training of higher values can outweigh the lower and the
neural network will not train properly. In this work the data is
normalized, since in our previous neural networks performed
much better than without one.

Since a neural network is created for each desired output
there is no need to standardize the output. The output stan-
dardization is usually used if there are more than one output
and they are in different order, hence affecting the way weights
converge during the learning process.

Statistical data is then collected to calculate the Root Mean
Square Error(RMSE) and correlation coefficient (R2) values
for both sets.

The created model may fit perfectly to the training data set
when the number of sampling points is equal to the number of
unknown coefficients, a situation known as “overfitting”. For
this reason, the verification data set is created so that the points
are at different locations than the ones used for fitting. If the
verification dataset RMSE and R2 values do not differ much
from the training values, then the model has trained correctly,
otherwise it must have been overfitted or trained improperly.

If the neural model did not train correctly, the training
parameters of the model can be adjusted or additional sample
points can be collected from the circuit simulation. Otherwise
the neural network can act as an accurate metamodel for the
PLL circuit.

VI. EXPERIMENTAL RESULTS

This section provides two case studies for the same baseline
design PLL circuit. The optimization is conducted on the
same metamodels that were generated as discussed previously.
Two different design specifications for MMDS and WiMax
applications are used to show that the initial design can be
brought to any specification that is within the metamodel’s
reach. MA and ABC are compared for speed and accuracy.

A. Design of Test case circuits: WiMax and MMDS PLL

The phase lock loop is a closed feedback loop circuit and is
based on an LC-VCO shown in figure 2. The baseline design
of this circuit is used from our previous research [15], [14].

Functional simulation of the circuit physical design is shown
in Fig. 3 with the PLL locking at 24.58 µs. The baseline phase
noise diagram shown in figure 4 shows that the circuit has
acceptable phase noise, -163 dBc/Hz at 10 Hz offset. All the
simulations are done with use of SPICE. The average power
consumption of the PLL circuit is 9.28 mW.

GND

Voutp

Voutn

C2

L1

VDD

NM2NM1

C1

PM1 PM2

Vtune

(a) Schematic

1
1
1
1
1
1

1
11
1
1

1
1

1
11
1

11
1
1
1
1
1

11
1111
11
11

11
11

11
111
1

111111 111111
1
1111
11
1111
11
11
11111111111 111111111
11
1
11
11
1111
11
111111 11111111 11111111
1111111111

1
1
1
1
1
1
1
1
111

1
111
1
1
1111111
11
1
1
11

11

1111
1111
1111

111

111
111
111

1111111

1
11
1
11
1
1

1

11

1
1
1
11
111

1
1
11
1
11
1
1

1

11

1
1
1
11
111

111111111111 111111111111 11111111 11111111111111111111111111111111 1111
11111111 1111111111 111111 111111111111 11111111111111111111 11111111 111111
11
11
11
1111
1111
1111
11111111 11111111 111111111111 11111111 111111111111 11111111111111111111 1111
1111111111111111111111111111111

1111 111111111111111
1
1
111111
111111
11
11
1111111111111111111111

1111111111

11111111111111111111
11111111111111111111111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111111111

1
1
1

1
1
11111

11111111111

1111111111111111111111111111111111111111111
111
111
111111111111111111111111111111111111111111111
111
111
1111111111
1
1

11
11
11

111111111

1111 1111

1111

11
11
1
1
1
1
11
11
1
1
1
1

1
1

1
1

1
1

11

11

1
1
1
1
1
1
11
11
1
1

11
1

1
11
1

11

1
11
1

1

1
1
1
1

1

1

1111
11
11
11

11

11

1111 11111 1111
11
1
1
1
1
1
11 1111111 1111111111 11

111 1111111111 1111111
11 11 111
1111
11
11
111111

1
1
11
11

111111111111111111111
111111111111111111111111
11111111111111

11111111111111111111111111111111
1111111111111111111111111111

1111 111111
1
1111
11
1111
11
11
11111111111 111111111
1
1
1
11
11
11
1111 11111111 11111111
111111111

1111 11
1
1
1

111111111111
111111111111111111111111111111111111
1111111111111111111111111111

1
1
1

1
1
11111

111

1111111111111111111111
111
111
111111111111111111111
111
111
1111
1
1

11
11
11

111111111

1111 1111

1111

11
11
1
1
11
11
11
11
1
1
1
1

1
1

1
1

1
1

11

11

1
1
1
1
1
1
11
11
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
11
11
11
11

1

1
1
1
11
1
1
1

1
1

111
111
111
111

1
1
1
1

1
1
1
1

1
1
1
1
1

1
1
1
1

111
111
111
111

1
11
11

1
1
1

11
1
11
1111
11
1
1

1111
11

111
1
1
111
1
11
11

1111
1111

1
11
1

11111
1
1
11
11
11
1
1

11
11

11
11

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

11
11
11

1
1
111111

11111

11111

1
1

1
1
1
1

11111111111
11111111111
11111111111

1
1
1
1

1

11
1

1

11
11

11

11
11

111
1
1
1

11
1111111111111111

11
11
11
11

11
11
11

11111

11111
11111

11111111111
11111111111
11111111111

1
1

11
11
11

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11111111111111111111
11111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111

1
1
1

1
1
111111111 1111111111111111111111111111111111111111111

111
111
111111111111111111111111111111111111111111111
111
111
1111111
1
1

11
11
11

111111111111

1111 1111

1111

11
11

1
1

11
11
1
1
1
1
11
11
1
1
1
1

1

1
1

1
1

11

11

1
1
1
1
1
1
11
11
1
1

11
11
1
1
1
1

1
1
1
1

1

1
1
1
1
1
1

11
11
11
11

1
1

1

1
111111
1111

111

1111
11111111

1
1
11

1
1

1

11111
11111

11
1

11

111
111
11

11111

1111111111
1111111111

1
1
1
1
1
1
1
1

1

1
1
1
11
11
11

11
11
11

11
11
11

11
11

11
11
11

11
11

111
111
111

111
111

111
111
111

111
111

11
11
11

11
11

11
11
11

11
11

111
111
111

111
111

111
111
111

111
111

11
11
11

11
11

11
11
11

11
11

1

111
111

111
111

111111111111111
111111111111111
111111111111111

11
11

11111
11111

11
11

11
11
1
1

11
11

1
1

11
11

1
1

1

11
11
1
1
1
1

1
1
1
1

1

11
11
11

11
11
11

11
11
11

11
11

11
11
11

11
11

111
111
111

111
111

111
111
111

111
111

11
11
11

11
11

11
11
11

11
11

111
111
111

111
111

111
111
111

111
111

11
11
11

11
11

11
11
11

11
111

1
1
1

1
1
1
1
11
11
11
11111

1
1
1
1
1
1
1
1
1

11111111
11111111111111
11111111111111
1111111
1111111

1
1
11111111111
11111111 111111111
1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

11
11
11
11
11

11111111
1
1
1
1

1
1
1
1
1

1
1
1
1
1

11
11
11
11
11

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

111
1
1
1
1

11111111
1
1
1
1

1111111

11
11

11
11
11

11
11

11
11

11
11
11

11
11

111
111

111
111

111
111
111

111
111

11
11

11
11

11
11
11

11
11

111
111

111
111

111
111
111

111
111

11
11

11
11

11
11
11

11
11

11111111111111
11111111111111
11111111111111
11111111111111
11111111111111
11111111111111
11111111111111

1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
111111111111111

111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
11111111111111111111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111

1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
11111111111111111111111111111111111

1111111111111111111
1111111111111111111
1111111111111111111
1111111111111111111
1111111111111111111
1111111111111111111
1111111111111111111
1111111111111111111

111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111

11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111

11
11

1
1

1

11
11
1
1

11
11

(b) Layout

Fig. 2. Schematic and 180nm physical design of the LC-VCO.

0 0.5 1 1.5 2 2.5 3 3.5
x 10

-5
2.7

2.75

2.8

2.85

2.9

2.95
x 10

9

Time (s)

F
re

q
u

en
cy

 (
H

z)

Frequency Plot

Fig. 3. Frequency plot for initial PLL circuit.

Table I shows the parameters selected for the PLL circuit.
For each SPICE simulation, each parameter has been selected
according to LHS sampling within its min-max range with a
total of 100 simulations for training and 30 simulations for
verification datasets.

B. Algorithm Setup

The selected Figure of Merit (FoM) function (Alg. 3) is
designed to interface with either optimization algorithm. The
FoM of interest is to minimize power as long as the PLL is
working within the frequency constraints.

MMDS standards are set in FoM function (Alg. 3) for freq =
2.7 GHz ±0.1% and l time = 200 ns while WiMax freq = 2.5

10
0

10
1

10
2 10

3 10
4-175

-170

-165

-160

-155

Frequency (Hz)

d
B

c/
H

z

Phase Noise of PLL

Fig. 4. Phase noise of the baseline PLL circuit.



TABLE I
PARAMETER RANGES AND OPTIMIZATION RESULTS OF PLL COMPONENTS FOR WIMAX AND MMDS SPECIFICATIONS

MMDS WiMax
Circuit Component Parameter Name min max Memetic ABC Memetic ABC

Phase Detector

DFF1 PMOS Wppd1 0.4 µm 2 µm 0.77 µm 1.22 µm 2.0 µm 2.0 µm
DFF1 NMOS Wnpd1 0.4 µm 2 µm 0.4 µm 0.61 µm 1.7 µm 1.71 µm
DFF2 PMOS Wppd2 0.4 µm 2 µm 0.4 µm 0.68 µm 1.25 µm 1.25 µm
DFF2 NMOS Wnpd2 0.4 µm 2 µm 0.4 µm 0.63 µm 0.71 µm 0.7 µm
AND PMOS Wppd3 0.4 µm 2 µm 0.4 µm 1.64 µm 1.8 µm 1.79 µm
AND NMOS Wnpd3 0.4 µm 2 µm 0.4 µm 1.01 µm 0.56 µm 0.56 µm

Charge Pump

M3, M4 WpCP1 0.4 µm 2 µm 2.0 µm 2.77 µm 1.72 µm 1.7 µm
M5, M6 WnCP1 0.4 µm 2 µm 0.4 µm 1.67 µm 0.43 µm 0.43 µm
M1, M2 WpCP2 4 µm 20 µm 1.0 µm 1.6 µm 1.81 µm 1.8 µm

M7, M8, M9 WnCP2 2 µm 20 µm 0.77 µm 1.09 µm 1.07 µm 1.07 µm

LC-VCO NM1, NM2 WnLC 3 µm 20 µm 3.0 µm 6.7 µm 19.45 µm 19.45 µm
PM1, PM2 WpLC 6 µm 40 µm 13.9 µm 18.9 µm 26.6 µm 26.6 µm

Divider

M5 Wn1Div 0.4 µm 2 µm 0.4 µm 0.43 µm 0.88 µm 0.86 µm
M6 Wn2Div 0.4 µm 2 µm 0.4 µm 0.74 µm 1.26 µm 1.26 µm
M7 Wn3Div 0.4 µm 2 µm 0.4 µm 0.41 µm 1.72 µm 1.73 µm
M8 Wn4Div 0.4 µm 2 µm 0.4 µm 0.63 µm 0.9 µm 0.92 µm
M9 Wn5Div 0.4 µm 2 µm 0.4 µm 0.7 µm 0.98 µm 0.98 µm
M1 Wp1Div 0.4 µm 2 µm 0.77 µm 1.27 µm 1.85 µm 1.85 µm
M2 Wp2Div 0.4 µm 2 µm 0.4 µm 1.17 µm 1.83 µm 1.80 µm
M3 Wp3Div 0.4 µm 2 µm 0.77 µm 1.83 µm 1.78 µm 1.74 µm
M4 Wp4Div 0.4 µm 2 µm 0.77 µm 1.65 µm 2.0 µm 2.0 µm

Algorithm 3 FoM function for MMDS application
1: Receive P coordinates.
2: Calculate frequency from neural network with P param-

eters = freq.
3: if freq is within specification then
4: Calculate locking time from neural network with P

parameters = l time.
5: if l time < specifications then
6: Calculate power from neural network with P param-

eters = power.
7: FoM = 1/(power × 1e3).
8: else
9: FoM = 0.

10: end if
11: end if
12: Return FoM.

GHz ±0.1%. It can be seen that the initial design does not fit
into these specifications. If the process to optimize this design
to these specifications is done manually, adjusting the physical
design multiple times, correcting the W/L parameters, etc., it
could take days, if not weeks to do so. Instead, the parameters
that were chosen to describe the circuit are used to sample the
design space using LHS sampling. The output is then recorded
and further used to train the neural network with each needed
specification for output. Another smaller set of LHS data is
carefully created for the same design parameters, but is made
sure that they are not the same as the training design set. This
set will be used for verification of the neural network to make
sure that the design is not overfitted and is accurate.

Both memetic and artificial bee colony algorithms which
were introduced in Section IV are used to optimize the
circuit to the above specifications. Since both algorithms are

constructed to reach an optimal maximum, the figure of merit
is transposed to: FoM = 1/(Power × 1000) since the power
units are mW.

C. Comparing Other Algorithms

Figure 5 shows the results for both algorithms running inde-
pendently to reach power minimization for MMDS constraints.
The memetic algorithm reaches a more optimal result faster
even though the ABC algorithm shows better results in the
beginning. This is due to the ABC algorithm being purely
stochastic, which does not enable the algorithm to always
converge to the global maximum, even though it has a chance
to do so with more iterations. The memetic algorithm starts off
a little bit slow due to the learning process, but then reaches
the result quite rapidly.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iterations

F
ig

u
re

-o
f-

M
er

it

Algorithm Search Progression for MMDS Specifications

MEMETIC
ABC

Fig. 5. Comparison of ABC versus MA for MMDS specifications.

Figure 6 shows the results as both algorithms are running
independent optimizations trying to maximize the FoM for
WiMax constraints. It can be observed that the MA reaches the
optimum quite faster than the ABC algorithm. Table I shows



that both algorithms also converge on a very close solution to
each other.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iterations

F
ig

u
re

-o
f-

M
er

it

Algorithm Search Progression for WiMax Specifications

ABC
MEMETIC

Fig. 6. Comparison of ABC versus MA for WiMax specifications.

Table II shows the final solution outputs for both optimiza-
tion algorithms. MA has shown the best result for MMDS
optimization by converging on a much better solution than the
ABC algorithm. The WiMax specifications are very closely
matched.

TABLE II
FINAL OPTIMIZATION RESULTS FOR THE PLL.

MMDS WiMax
Memetic ABC Memetic ABC

Power 0.51 mW 0.68 mW 0.79 mW 0.79 mW
Locking Time 1.9 µs 1.58 µs 1.93 µs 1.92 µs

Frequency 2.702 GHz 2.703 GHz 2.502 GHz 2.502 GHz

As a final comparison, Table III shows the run time and
convergence for both algorithms. The speedup was calculated
for each in comparison to the ABC algorithm. Even though
both algorithms complete the same amount of iterations the
speedup comes from the number of accesses to the metamod-
els, which the ABC algorithm has to complete for every bee.
Since the MA does not involve as many calculations at the
global stage, this affects the calculation time.

TABLE III
ALGORITHMS COMPARISON FOR THE PLL.

Algorithm Simulation Convergence (iter.) Speedup
Time WiMax MMDS

ABC ≈12 min 4914 3193 1×
Memetic ≈5 min 1221 825 2.4×

VII. CONCLUSION AND FUTURE RESEARCH

This paper presented a metamodeling design flow using
neural networks. It was shown, by the example of a 180 nm
PLL, that the presented design approach was able to bring
a circuit that was not within specification to two different
design specifications. A new heuristic memetic algorithm was
presented and was shown to work considerably better than
a swarm based optimization algorithm (ABC). The MA has
converged on the near-optimal result 2.4× faster than the

ABC algorithm, while finding the same or better solution.
The metamodel creation process, which involves sampling and
SPICE simulations at a total of 130 points, took approximately
12.5 hours, while the optimization process only takes 5 min-
utes. This would be a considerable speedup over running the
optimization on the SPICE netlist itself, or readjusting the
layout manually.

REFERENCES

[1] G. Wolfe and R. Vemuri, “Extraction and Use of Neural Network Models
in Automated Synthesis of Operational Amplifiers,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems., vol. 22,
no. 2, pp. 198–212, February 2003.

[2] A. Agarwal, G. Wolfe, and R. Vemuri, “Accuracy Driven Performance
macromodeling of Feasible Regions during Synthesis of Analog Cir-
cuits,” in Proc. Great Lakes Symp. VLSI, GLSVLSI, 2005, pp. 482–487.

[3] C.-Y. Chao and L. Milor, “Performance Modeling of Analog Circuits
Using Additive Regression Splines,” in Proceedings of the IEEE 1994
Custom Integrated Circuits Conference, 1994., May 1994, pp. 301–304.

[4] Y. Zhao, J. Gao, and X. Yang, “A Survey of Neural Network Ensembles,”
in International Conference on Neural Networks and Brain, vol. 1,
October 2005, pp. 438–442.

[5] Y. Bontzios, M. Dimopoulos, and A. Hatzopoulos, “A Memetic Algo-
rithm for Computing 3D Capacitance in Multiconductor VLSI Circuits,”
in Proceedings of the IEEE 14th International Symposium on Design and
Diagnostics of Electronic Circuits Systems, 2011, pp. 341–346.

[6] B. Liu, F. Fernandez, and G. Gielen, “An Accurate and Efficient Yield
Optimization Method for Analog Circuits Based on Computing Budget
Allocation and Memetic Search Technique,” in Proceedings of the
Design, Automation Test in Europe Conference Exhibition, 2010, pp.
1106–1111.

[7] E. Armstrong, G. Grewal, S. Areibi, and G. Darlington, “An investigation
of parallel memetic algorithms for vlsi circuit partitioning on multi-
core computers,” in Proceedings of the 23rd Canadian Conference on
Electrical and Computer Engineering, 2010, pp. 1–6.

[8] P. Subbaraj, K. Sivasundari, and P. Siva Kumar, “An Effective Memetic
Algorithm for VLSI Partitioning Problem,” in Proceedings of the IET-
UK International Conference on Information and Communication Tech-
nology in Electrical Sciences, 2007, pp. 667–670.

[9] M. Tang and X. Yao, “A Memetic Algorithm for VLSI Floorplanning,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cyber-
netics, vol. 37, no. 1, pp. 62–69, feb. 2007.

[10] R. Dawkin, The Selfish Gene. Oxford, U.K.: Oxford Univ. Press, 1976.
[11] P. Moscato, “On Evolution, Search, Optimization, Genetic Algorithms

and Martial Arts: Toward Memetic Algorithms,” Technical Report Cal-
tech Concurrent Computation Program. Pasadena:California Institute of
Technology, 1989.

[12] E. Elbeltagi, T. Hegazy, and D. Grierson, “Comparison Among Five
Evolutionary-based Optimization Algorithms,” Advanced Engineering
Informatics, vol. 19, pp. 43–53, January 2005.

[13] Y.-S. Ong, M.-H. Lim, N. Zhu, and K.-W. Wong, “Classification of
Adaptive Memetic Algorithms: A Comparative Study,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 36,
no. 1, pp. 141–152, February 2006.

[14] O. Garitselov, S. P. Mohanty, E. Kougianos, and P. Patra, “Bee Colony
Inspired Metamodeling Based Fast Optimization of a Nano-CMOS
PLL,” in Proceedings of the 2nd IEEE International Symposium on
Electronic System Design (ISED), 2011.

[15] O. Garitselov, S. P. Mohanty, and E. Kougianos, “Fast-Accurate Non-
Polynomial Metamodeling for nano-CMOS PLL Design Optimization,”
in Proceedings of the 25th IEEE International Conference on VLSI
Design, 2012.


