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Abstract—This paper explores an ordinary Kriging based
metamodeling technique that allows designers to create a model
of a circuit with very good accuracy, while greatly reducing the
time required for simulations. Regression and interpolation based
methods have been researched extensively and are a commonly
used technique for creating metamodels. However, they do not
take into account the effect of correlation between design and
process parameters, which are critical in the nanoscale regime.
Kriging provides an improved metamodeling technique which
takes into effect correlation effects during the metamodel gener-
ation phase. The ordinary Kriging metamodels are subjected to
an Ant Colony Optimization (ACO) algorithm that enables fast
optimization of the circuit. This design methodology is evaluated
on a sense amplifier circuit as a case study. The results show that
the Kriging based metamodels are very accurate and the ACO
based algorithm optimizes the sense amplifier precharge time
with power consumption as a design constraint in anaverage
time of 3.7 minutes (optimization on the metamodel), compared to
72 hours (optimization on the SPICE netlist).

Keywords-Nano-CMOS, Sense Amplifier, Robust Design, Meta-
modeling, Kriging Methods

I. I NTRODUCTION

Analog simulations use very accurate models and have the
ability to accurately estimate performance measures. However,
with the scaling of designs in the deep nanometer region and
the increase in the level of complexity, exhaustive design space
exploration through computer simulation has become more
daunting and most often impractical. In nano-CMOS designs,
the effects of process variation are increasingly becoming
more dominant. These factors make design optimization very
difficult and time consuming. Metamodeling has been one
researched and applied solution to reduce the time burden
of computer simulation while keeping the accuracy to an
acceptable level.

Metamodels, by definition, are an approximate description
of the performance response of design models.Essentially,
metamodels are models of a simulation model (hence the
term meta) [1], [2]. The use of metamodels abstracts the time
complexity of analog simulations while capturing in detail
the behavior of the design. This gives the designer quick
access to a sufficiently accurate design space exploration tool.
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Commonly used metamodeling techniques include Response
Surface Modeling (RSM), linear and low-order polynomial
regression techniques [3], [4], [1], and neural networks [5], [6],
[7]. Linear and low-order polynomial regression techniques
generally provide a better fit for local neighborhoods but are
less accurate for global design spaces [2], [8]. Due to the os-
cillatory characteristic of polynomial fits, designs with rapidly
changing data points are not well fitted which is the case
with nano-CMOS designs [9]. In generating the metamodels,
regression techniques assume the errors due to variation across
the design space are random and thus equally approximate
the error over points on the fitting surface. For many design
processes, this error is not random but is correlated with other
process and design parameters. In nano-CMOS designs, the
correlation can vary significantly across the global design
space and even locally, hence making correlation effects a
significant factor in accurate metamodeling. Therefore, there
is need to implement a metamodel which captures these
correlation effects to improve its accuracy.

This paper proposes a Kriging based metamodeling tech-
nique that generates accurate metamodels with the error due
to correlation taken into consideration. Kriging techniques
were originally introduced in the early 1950’s in geostatistical
analysis and have been applied to many other fields [10],
[11], [12] and recently in VLSI [13], [14]. Kriging based
techniques generate interpolating functions for each estimated
point using the correlation effect between design points in
the local space. Each point response is estimated with a
unique set of weights. One major improvement of Kriging
over conventional regression is that the estimated response at
sample points is the same as the actual response at these points
(although it may differ in-between). The generated Kriging
metamodel is then subjected to an Ant Colony Optimization
(ACO) based algorithm for fast optimization. [15], [16], [17].
Originally used for discrete optimization problems, there has
been recent research to adapt ACO for continuous functions
[16], [18], [17], [19]. The novel contributions of this paper
are the application of Kriging to generate metamodels that
account for correlation effects in nano-CMOS designs, and
the use of ACO-based algorithms for fast optimization.

The rest of this paper is organized as follows. In section II,
relevant prior research is summarized. Section III discusses



the background of Kriging methods. The proposed algorithm
is presented in Section IV. In section V experimental results
are presented. Conclusions and directions for future research
are presented in Section VI.

II. RELATED PRIOR RESEARCH

The research and application of metamodeling as a design
methodology has been proposed in the literature before. A
popular metamodeling technique is low-order polynomial re-
gression [12], [3], [4], [1]. In [3], an analysis of different
metamodels generated with a number of sampling techniques
is presented. While low-order polynomial regression tech-
niques are suitable for generating response surfaces, they
are only accurate for local neighborhoods and present poor
fitting for global design spaces [9], [2], [5], [20]. Regression
techniques average the errors in calculating weights over the
design space. This creates an oscillating effect for fast chang-
ing data, especially when the autocorrelation error between
design points varies significantly. Geometric programming
is presented in [20]. This solves convex problems deduced
from circuit design equations expressed in polynomial forms.
The approximations made in deducing the circuit equations
reduce the accuracy, even though they are suitable for global
optimization. Neural Networks (NN) have also been explored
for metamodel generation [6], [5], [7], [21]. In optimizing
metamodels for design objectives, Simulated Annealing and
Tabu Search algorithms are explored in [3]. In [22], simulated-
annealing algorithm is used to optimize a sense amplifier
over Kriging metamodels. ACO originally was proposed for
discrete combinatorial problems and is also being actively
explored for application on continuous problems [15], [16],
[17]. This paper implements an ACO based algorithm.

III. O RDINARY KRIGING METHOD FORMETAMODELING

The fundamental idea behind Kriging methods is that the
predicted outputs are weighted averages of sampled data. The
weights are unique to each predicted point and are a function
of the distance between the point to be predicted and observed
points. The weights are chosen so that the prediction variance
is minimized [23], [10].

The general expression of a Kriging model is of the follow-
ing form [22]:

y(x0) =
L∑

j=1

λjBj(x) + z(x), (1)

wherey(x0), is the predicted response at design point(x0)
{Bj(x), j = 1, · · · , L} is a specific set of basis functions over
the design domainDN , λj are fitting coefficients (also known
as weights) to be determined andz(x) is the random error.
Kriging differs from common least squares based approaches
in that z(x) is assumed to be a random process and not
independent, unique to each weight and not distributed iden-
tically. This process has meanµ, varianceσ2, and correlation
function r(s, t) = Corr(z(s), z(t)) (called thevariogram in
geophysics) which are assumed known.

The variogram is used to derive the Kriging weights,λj .
The autocorrelation of the design points is characterized by the
covariance function [24]. The weights are chosen so that the
Kriging variance is minimized. There are different variations
of the Kriging model which include simple, ordinary and
universal Kriging. The proposed metamodel in this paper is
based on the ordinary Kriging technique which assumes a
mean that is constant in the local domain of a predicted point.

In ordinary Kriging techniques, the weights are chosen
to minimize the variance under the unbiasedness constraint
E(z(x̂) − z(x)) = 0.

∑n
j=1

λj = 1, Hence the weights are
given by the following expression:




λ1

...
λn

µ


 = Γ−1




γ(e1, e0)
...

γ(en, e0)
1


 , (2)

whereµ is a Lagrange multiplier.Γ is the covariance matrix
of the observed points and for ordinary Kriging is given as:

Γ =




γ(e1, e1) · · · γ(e1, en) 1
...

. . .
... 1

γ(en, e1) · · · γ(en, en) 1
1 1 1 0


 , (3)

whereγ(e1, e2) = E(|Z(e1)− Z(e2)|
2).

Estimation of the correlation between sampled points and a
predicted point is done with the semivariogram model. Based
on the nature of the observed data points, the empirical model
could be fit to either spherical, linear, Gaussian or exponential
theoretical models. The smoothness of the predicted points is
affected by the theoretical model used. A steeper model re-
duces the smoothness because it places more weight on closer
neighbors. The most common model used is the spherical and
is expressed by the following expression:

γ(h) = C0 + C

(
3h

2a
−

1

2

(
h

a

)3
)

for 0 < h ≤ a, (4)

whereC0 andC are fitting coefficients anda is a shape factor.

IV. T HE PROPOSEDDESIGN FLOW USING KRIGING

METAMODELS AND ANT COLONY ALGORITHM

Algorithm 1 shows the complete flow of the proposed design
that incorporates ordinary Kriging and the ACO algorithm.
A sense amplifier used in conventional DRAMs is used to
demonstrate the proposed design optimization methodology.

Ant Colony Optimization (ACO) algorithms are inspired
by the foraging behavior of ant species and are metaheuristic
random searching algorithms. The majority of ACO algorithms
have been applied to discrete combinatorial optimization prob-
lems such as routing, scheduling, and timetabling [15], [25].
A classic example in demonstrating the ACO algorithm is
the Traveling Salesman Problem (TSP). The basic stages of
ACO based algorithms are metaheuristic which means they
can be easily modified for application on a wide range of
optimization problems [25]. Recently, there has been more



Algorithm 1 The Proposed Design Flow.
1: Create baseline design.
2: Identify Figures of Merit (FoMs) (verify functionality).
3: Create physical layout.
4: Perform DRC/LVS and RLCK extraction.
5: Identify design parameters and parameterize netlist.
6: Metamodel Generation.
7: Perform Latin HyperCube Sampling to generate design

points for metamodel.
8: Generate Kriging metamodels using mGStat tool.
9: Optimization.

10: while (Optimization objective not met ) do
11: Perform ACO based algorithm.
12: end while
13: return Optimized Design.

research to extend the application of the ACO algorithms to
continuous function problems [18], [16], [17], [19].

The basic characteristics of ACO algorithms include the in-
cremental construction of solutions and the use of pheromone
updates to guide point explorations. The basic stages for the
ACO metaheuristic are as follows:

1) Initialize variables and set conditions
2) Construct ant nodes
3) Perform local search (optional)
4) Update pheromones

After the initialization step, the algorithm iterates between
steps 2-4 until the condition for termination is met.

ACO algorithms for continuous problems differ from dis-
crete optimizations in the selection of ant nodes. In [18],
[25], [16], [17], [26], [27] several modifications to ACO for
continuous function optimizations have been presented. One
major way of adapting the ACO for continuous functions is
dividing the solution space into different intervals and having
each ant or node search an interval for an optimal solution.
The nodes can also directly search the continuous function.
The proposed algorithm in this paper is most closely related
to the approach proposed in [16], where the design space is
sampled for search nodes. Where the proposed algorithm in
this paper differs from [16] is that each decision variable is a
given node and not a set of nodes. In this case a solution by a
node is also assumed a “path” traversed by an ant, keeping in
line with the original ACO framework. With the discretization
of the continuous problem space, the ACO algorithm can be
easily used to generate optimal solutions.

The pheromones are updated using the following:

τi = (1− ρ) . τi + ρ . ∆τi, (5)

whereρ is the rate of evaporation, and the pheromoneτi in the
i-th iteration is updated only for the best solutions. The criteria
and number of best solutions can be decided independently for
each optimization problem.

The proposed algorithm is shown in Algorithm 2. The
details of implementation are included in steps 6 and 7. For

Algorithm 2 ACO Based Heuristic Algorithm Setup.
1: Initialize parameters.
2: Set termination conditions.
3: Generate random node ants.
4: Perform pheromone update.
5: while (Termination condition not met ) do
6: Generate node ants with pheromone probability.
7: Update pheromone.
8: end while
9: return result.

Algorithm 3 ACO Heuristic Algorithm for Sense Amplifier.

1: Initialize number of ants (solutionset)
2: Initialize iteration counter:counter ← 0
3: Start with initial baseline solution̂(SAi)

4: Generate metamodel functions for each FoM of̂(SAi)
with Ordinary Kriging.

5: Consider the objective of interestTPCi

6: Generate random ant nodesAL,Wi, where i =
1,2,. . . ,Nant.

7: Assign initial pheromone,τi
8: counter← max Iteration

9: while (counter > 0) do
10: Generate ant solutionsTPCi

11: Rank solutionŝ(SAi) in set from best to worst.
12: Update pheromone, increase pheromone for best solu-

tion and evaporate pheromone for all others
13: result← TPCi

14: Generate new ant nodesAL,Wi,
15: counter← counter − 1
16: end while
17: return result

each iteration, a new set of ant solutions (feasible design
points) is generated. The solutions are updated with an evapo-
rating pheromone. The best solution is however updated with
more pheromone thus increasing the probability of the path
(node) being traversed by more search ants. The iterations are
continued until the termination condition is met which, in this
case, is a maximum number of allowed iterations. The speed
of convergence of the ACO algorithms can be controlled by
the rate of pheromone update. A series of runs show that for
this circuit, an average of 100 iterations converge the algorithm
to an optimal solution.

The optimization of the Kriging metamodels is done with
the proposed ACO base algorithm. For this algorithm (3), a
metamodel generated with 500 sample data points is used.
The optimization goal is to minimize the precharge timeTPC ,
without violating the power constraint. The parameters are
initialized for random design points of the NMOS length and
width, Ln andWn. The algorithm updates the pheromones by
evaporation but remembers the best solution, thereby increas-
ing the probability of more search ants in that direction.
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Fig. 1. Sense amplifier circuit with sizing for 45nm CMOS.

V. EXPERIMENTAL SETUP AND RESULTS

A. Case Study Circuit

The experimental circuit used in this paper is a sense
amplifier used in DRAMs. The circuit schematic is shown in
Fig. 1. The sense amplifier is crucial to the correct operation of
the DRAM. Its performance is significantly affected by process
variation which has to be taken into account during the design
process, making it an ideal example circuit for this study.

The circuit is characterized for Figures of Merit (FoMs)
which include theprecharge and equalization time (TPC )
— the time used to equally precharge the bitlines for sense
operations,sense delay (TSD) — the time it takes for a
sufficient voltage sharing to appear on the bitlines,power
consumption(PSA) — average power consumed including
static and dynamic power andsense margin (VSM ) — the
minimum amount of voltage that must appear on the bitlines
for correct amplification, as discussed in detail in [28].

Functional simulation of the sense amplifier is shown in Fig.
2. It shows the various operating states of the sense amplifier:
the write, hold and read stages. Initial transistor dimensions are
based on nomimal values for a 45 nm process design kit.Ln

andWn are used as design parameters (the parametric analysis
shows the NMOS transistors dominate the FoM). The design
objective could be single or multi-objective; in this case a
single objective with design constraint is presented. For this
design, the optimization objective is the precharge timeTPC ,
while power consumption is used as a constraint.TPC is a
significant FoM in the overall speed of the DRAM.

B. Metamodel Generation and Accuracy

This section presents the methodology for the metamodel
generation and analyzes their accuracy. As a baseline for com-
parison for simulation time, a response surface was generated.
A total of 10,000 simulations were run to created the “golden”
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Fig. 2. Sense amplifier functional simulation.

surfaces which are not shown in this paper for brevity. For
ordinary Kriging, the sample data points were generated using
the Latin Hypercube Sampling (LHS) technique. Three sets of
ordinary Kriging metamodels were generated with the mGstat
toolbox [29] using 100, 200 and 500 sampling points. For
each set, a metamodel was generated for each FoM. Figure 3
shows the surface plots generated through the ordinary Kriging
technique.

A statistical summary of the accuracy of the metamodels is
shown in Table II. The metamodel predictions are compared
to the exhaustive surfaces via the Mean Square Error (MSE),
Root Mean Square Error (RMSE), the correlation coefficient
R2 and the standard deviation (STD). MSE and RMSE are
defined by the following expressions:

MSE =
1

N

N∑

i=1

(
Yi − Ŷi

)2
, (6)

RMSE =

√√√√ 1

N

N∑

i=1

(
Yi − Ŷi

)2
, (7)

where the summation runs over theN points used to generate
the metamodels, andYi and Ŷi are the actual and predicted
responses, respectively at pointi.

Table II shows that the metamodels created are quite accu-
rate with very low RMSE values and averageR2 values in the
range of 0.98–0.99 with theR2 values forPSA a little lower
than the other FoMs. As expected, the metamodels generated
from 500 LHS sampling points are generally more accurate
than the ones generated from 200 or 100 sampling points. The
time required for the metamodel generation is 3.69 minutes
which is significantly lower than the 72 hours required for an
exhaustive simulation.

C. Optimization Results

The values for the optimized design are shown in Table III.
TPC has been reduced by 65. 77 % whilePSA was increased
by 0.85 %. The final design parameters forLn andWn are 65
nm and 300 nm, respectively. The final design also increases
the area cost for the physical layout by 23.10%. The total
average time taken for design optimization using the sense
amplifier as the case study circuit is 3.9 minutes. The bulk
of the time is consumed in the metamodel generation as the



TABLE I
CHARACTERIZATION OF FIGURES OFMERIT.

Design Precharge time,TPC Sense delay,TSD Power,PSA Sense Margin,VSM Area
(ns) (ns) (µW) (mV) µm2

Schematic 18.02 7.46 1.16 29.33 -
Layout 18.20 7.45 1.17 29.25 6.045
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Fig. 3. Kriging predicted surfaces for FoMs using 500{Ln,Wn} sample points

ACO algorithm converges in an average time of 1.36 sec.
The process from design space exploration to optimization
is reduced by a factor of approximately103×. The final
(optimized) layout is shown in Fig. 4.

VI. CONCLUSIONS ANDFUTURE RESEARCH

This paper presented a new design methodology that com-
bines Kriging techniques for metamodel generation and ACO
based algorithms. Kriging provides an improved method for
metamodeling that takes into account the correlation effects
between points in the design and process space for nano-
CMOS designs. It also improves the accuracy of the meta-
models. It has very low RMSE when compared to exhaustive
surfaces but it takes longer time to generate than conventional
methods. ACO based algorithms have also been applied to the
metamodels for fast optimizations. The precharge timeTPC

is improved by 65.77 % within the power constraints. This
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Fig. 4. Final physical design for sense amplifier in 45nm technology.

methodology has been demonstrated using two design param-
eters. In future research, this methodology will be extended to
more parameters and multi-objective optimization goals.



TABLE III
CHARACTERIZATION OF FIGURES OFMERIT.

Design Precharge time,TPC Sense delay,TSD Power,PSA Sense Margin,VSM Area
(ns) (ns) (µW) (mV) µm2

Schematic 18.02 7.46 1.16 29.33 -
Layout 18.20 7.45 1.17 29.25 4.294
Optimized 6.23 2.58 1.18 35.56 5.286
Improvement 65.77 % 65.37 % -0.85 % 21.57 % 23.10 %

TABLE II
STATISTICAL ANALYSIS OF THE KRIGING PREDICTED RESPONSES

FoMs Ordinary Kriging

Samples 100 200 500

Precharge
MSE 2.20× 10

−19
5.23× 10

−20
1.84× 10

−20

RMSE 4.69× 10−10 2.29× 10−10 1.36× 10−10

R2 0.9650 0.9917 0.9971
STD 4.32× 10

−10
2.03× 10

−10
1.27× 10

−10

Sense Delay
MSE 4.22× 10

−20
1.16× 10

−20
4.75× 10

−21

RMSE 2.05× 10−10 1.08× 10−10 6.89× 10−11

R2 0.9529 0.9871 0.9947
STD 1.89× 10

−10
9.39× 10

−11
6.26× 10

−11

Power
MSE 1.84× 10−17 1.08× 10−17 1.02× 10−11

RMSE 3.44× 10−09 3.29× 10−09 3.20× 10−09

R2 0.8384 0.8525 0.8606
STD 1.19× 10

−09
9.47× 10

−10
6.06× 10

−10

Sense Margin
MSE 1.12× 10−07 3.41× 10−08 9.47× 10−09

RMSE 3.35× 10−04 1.85× 10−04 9.73× 10−05

R2 0.9804 0.9940 0.9983
STD 2.98× 10−04 1.62× 10−04 9.05× 10−05
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