
Low Complexity Cross Parity Codes for Multiple
and Random Bit Error Correction

Mahesh Poolakkaparambil1, Jimson Mathew2, Abusaleh M. Jabir1, and Saraju P. Mohanty3

1Department of Computer Science and Electronics, Oxford Brookes University, UK.
2Department of Computer Science, University of Bristol, UK.

3Department of Computer Science and Engineering, University of North Texas, USA.

Abstract— Error detection and correction which has been used
in communication and memory design is becoming increasingly
important in fault tolerant logic circuit design. As a result of the
aggressive technology scaling, the current high-density integrated
circuits are easily succumbed to faulty operations generated from
many sources including stuck-at-faults, radiation induced faults,
or malicious eavesdropper attacks. The currently used techniques
like low-density parity-check (LDPC) and Hamming code based
fault masking to mitigate bit flips in the digital circuits are
either single bit error correcting or multiple error correctable
with Bose-Choudhury-Hocquenghem (BCH) and Reed-solomon
based methods with very large overheads. This paper introduce
a novel cross code based method that can correct multiple
errors with minimal compromise in error correction capability
and area. The key idea of the novel method proposed in this
paper is that do not correct all the errors but minimize their
probability being escaped. Experimental results of the proposed
methods show that the following: (1) area overhead is 101%
for Hamming cross code and 106% for BCH cross code for a
90-bit finite field multiplier and (2) 150% for Hamming cross
code and 170% for BCH cross codes for practically used 163-
bit digit serial polynomial basis multiplier. Thus, the proposed
methods are significantly efficient compared to Triple Modular
Redundancy (TMR), LDPC, Hamming based methods in terms
of area overhead and also the first attempted approach to a low
complexity multiple error correctable digit serial multiplier to
the best of the authors knowledge.

Keywords: Polynomial Basis Bultiplier, Concurrent Error
Detection, Single Error Correction, N-Modular Redundancy,
Bose-Choudhury-Hocquenghem Code.

I. I NTRODUCTION

The need for high density integration of CMOS circuits
drove the semiconductor industry to a 22nm feature size that
was supposed to be unthinkable previously. The chip vendors
are able to integrate more and more devices on to the single
die to reduce the cost of computation. One of the negative
effects that is inevitable due to miniaturization of the integrated
devices is their faulty operations when subjected to radiations,
or stuck-at-faults [1]. Previously, the radiation interference to-
wards the digital circuit operations was mainly due to decayof
the packaging. Other probabilities of such situations are when
the integrated circuits are put into space related operations
where they are continuously in contact with cosmic rays. When
cryptographic application specific integrated (ASIC) are used
to delicately perform the authentication operations with much
higher speed pulled the attraction of eves droppers who are
interested in leaking information [2], [3]. These kind of attacks

based on radiation bombardment are widely know as transient
attacks.

Due to the random nature of these attacks, it is quite hard
to model and mitigate such malicious eavesdropping. Due to
the globalization of semiconductor industries and taking into
the consideration that most of the ASIC designs are often
manufactured in a third party vendor, possibilities of adding
intruder circuits also called as hardware trojans that makes
the circuit temporarily faulty to help the attacker to gather the
hidden data or a security key that is been protected by the
cryptogrphic chip [4].

The cryptographic processors are present in vast majority of
day-to-day applications such as TV set-top boxes, bank ATM
machines, credit cards, mobile communications and digital
right management [5]. Most of these applications are meant
to be executing one among the many cryptography algorithms
at a much faster rate. They often hide information such as a
secret key and some secret or important data. An attacker with
the help of a prominent laboratory set up can subject such ded-
icated cryptography chips to radiations under controlled man-
ner. Such transient attacks that are proved to be effective for
revealing a secret key or the design intellectual property (IP)
itself that can be easily cloned to make unauthorized version
of the hardware. Various implementations of cryptographic
processors designed for various cryptographic algorithmsare
widely researched and it reveals that the multiplier circuits
are most complex unit of such a processor [6]. Hence they are
undoubtedly stay as the main notion of attack for an attacker.
Thus, it is evident that such functional arithmetic circuits or
the digital circuits in general must be made attack tolerantto
prevent malicious attacks or assure their fault free performance
in a radiation prone environment.

The remainder of this paper is organized in the following
manner. Section II explains the state of the art fault tolerant
designs to mitigate the transient errors. The proposed novel
cross code parity based multiple error correction is introduced
in the Section III with a simple design example. This section
also derives the closed form expressions of the design. Section
IV discusses the experimental results and quantitative analysis.
The conclusion and future extension of the proposed research
in Section V.



II. RELATED PRIOR RESEARCH

There are few existing techniques presented in current
literature to mitigate such transient errors. One approachfor
detecting erroneous calculations in finite field circuit is based
on space redundancy. One example for such a space redundant
scheme is Triple Modular Redundancy (TMR). In TMR, the
actual functional block is replicated three times and the output
is compared for correctness with a voter [7]. If two out of three
circuits agree to one results to be correct, the voter stick to that
as the final result of the circuit. The major drawback of TMR
is that, the hardware overhead is always 200%. Another issue
of TMR is that the reliability depends on the voter also the
assumption is that error happens only in one functional block
out of three. Another approach for error detection is based on
time redundancy. This approach is also called as Concurrent
Error Detection (CED) [8], [9]. In CED, an additional error
monitoring block is hooked to the actual circuit that flags
the occurrence of an error. Once the error flag is active,
the functional block rolls back and recomputes. This induces
a high delay penalty to the calculation that is unpleasant
in many applications. In [10] authors present a method to
protect memories against multiple bit upsets and to improve
manufacturing yield. This method combines Hamming and
Parity codes to assure the improvement of reliability and yield
of the memory chips in the presence of high defects and
multiple bit-upsets. However, the approach is specificallyto
memory design.

Some approaches are reported for double error detection and
single error correction known shortly as SEC/DED schemes.
SEC/DED are based on hamming or LDPC codes that can
correct only single bit errors in the calculations [11], [12].
But analysis shows that transient error occurs at one critical
node can cause multiple output errors due to large fan-out of
the current large circuits. Other known but the least explored
approaches are based on inherent properties of the functional
blocks. One among such method is based on implication based
error detection. Implication exist in any circuits and their
violation can be used to detect error occupance [13].

It is evident from the above discussions that the research
for handling multiple error detection and correction resulting
form radiation induced transient errors or stuck-at-faults is
still lacking. The current paper presents a novel transienterror
correcting technique based on cross parity scheme. The idea
of introducing such a viable scheme is to make a trade of
between area overhead and the fault tolerance capability. The
key idea is to detect and correct as many errors as possible
with less area overhead and less errors being escaped.

III. PROPOSEDCROSSPARITY CODES FORMULTIPLE

ERRORCORRECTION

The very basic and easy method to do multiple bit error
detection and correction is to use the well known forward
error correction codes. The forward error correcting codesare
generally meant to correct erroneous data in communication
related applications. Hence the main challenge of applying
these methods for fault tolerant circuit design is often complex
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Fig. 1. General block diagram of cross parity based error correction

Fig. 2. Example of cross parity based error correction techniques

and tricky. Also, the complexity associated with decoding the
error information in order to perform the correction always
consume comparatively higher area overhead though they give
potential freedom in correcting fixed multiple bit errors [14].
In certain applications where area overhead is a criteria, one
can design circuits with a trade of between the number of bit
error correction and the area overhead. In this section hence we
introduce a novel methodology for multiple bit error correction
in logic circuits by using only the error detection featuresof
the well known Hamming and BCH codes cross coupled with
simple output parity prediction to save the area complexity
contribution from the decoding circuitry of these codes. By
doing so one can easily achieve a trade of between area
and fault tolerance by simply avoiding the complex decoding
implementations of the error correction codes. In this section
we have explained our proposed method with two multiplier
architecture mainly bit parallel multipliers and later with a
163-bit digit serial or world level multiplier that is used in
Elliptic curve cryptography (ECC). The basic block diagram
of the cross parity based code is as shown in Fig. 1. The major
blocks are the functional block that need to be transient error
hardened, cross parity predictor to detect error occuranceand
a simple error correction block.

A. Multiple Error Detection

The structural model of such a cross parity technique is
as shown in Fig. 2. Here we group the output bits of the



circuit in general uniform manner or in a random manner.
Each rows of the grouped output bits are encoded either by
using Hamming code or BCH codes, depending upon the
number of error correction we need. Similarly the columns are
encoded using simple output parity. Here we have considered
simple Hamming code that can detect double errors and BCH
code that will detect as much as 6 errors in each row. For
better understanding of the row and column wise encoding
we explain the procedure with an example circuit. We hence
consider a 20-bit bit parallel finite field multiplier as example.

B. Error Detection Using Hamming Code Parity

Lets us assume the rows are encoded with Hamming codes
then, each row is encoded with Ham(9,5) code. In other words,
we require 4 bit parity to detect double error in one row. The
4 parity information for the first row is given by the following
expression:

P1 = C0⊕C2⊕C4 (1)

P2 = C1⊕C2⊕C3⊕C4 (2)

P3 = C0⊕C3⊕C4 (3)

P4 = C1⊕C2⊕C4 (4)

Similarly, each row is encoded separately and treated as
a different code word. The columns are encoded using the
simple parity. Every two bits are protected by a column parity
CP as shown in Fig. 2. The column parities of the first column
are determined as shown in the equations below. Rest of the
column parities are generated exactly the same was as that of
CP0 to CP3, as represented in the following:

CP0 = C0⊕C10 (5)

CP1 = C5⊕C15 (6)

CP2 = C2⊕C12 (7)

CP3 = C7⊕C17 (8)

The set of equations from Eqn. (1) to Eqn. (4) helps to
determine the occurrence the multiple error in each row.
Similarly, the Eqn. (5) to Eqn. (8) computed for each column
also predict the particular bit that being in error using the
properties of cross parity. Some of the error patterns that our
technique can correct are given in Fig. 3.

C. Multiple Error Correction

The above section explained how the errors are detected
in both rows and columns. By just identifying the errors are
not sufficient enough to correct them. Using classical error
correction codes, they need a separate section often calledas
a decoder in order to identify the erroneous bit position and
to correct it.

We eliminate the complex decoders using the fairly simple
cross codes and use a simpleAND-XOR logic to perform the
correction. For example in Fig. 3 (a), suppose bits C0, C1, C5
and C6 are in error. One can easily predict erroneous bits C0
and C2 using the Hamming code of row1 and similarly the
errors in C5 and C6 are detected by Hamming code of row2.

Fig. 3. Example patterns of hamminng based crossparity code based
correction

Fig. 4. Example patterns for hamming based cross parity code based
correction for a 64-bit multiplier

But we just know 2 bits in row1 and row2 are in error but
not their location. To find out which bits in each rows are in
error can be easily done using the column parties as bit C0
is protected by CP0, bit C5 is protected by CP1. Similarly,
the bits C2 and C7 are protected by CP2 and CP3. using the
combination of both row and column parity, one can easily
say which bits are in error.

We then use a simpleAND-XOR logic to correct the
detected errors. Fig. 4 shows some of the example patterns
of the erroneous bits that can be corrected using the cross
codes. A set of errors in Fig. 4 are denoted by same color
indicator.

In similar way we can incorporate BCH codes for row error
detection as it can detect more number of errors in each row.
Fig. 4 shows example patterns of errors in a 64-bit finite
field multiplier with BCH decoding in each row. But with a
BCH(31,16) code, we can easily detect up to 6 errors per row
that hence clearly increase the number of bits being corrected
as compared to the simple hamming code.

D. Error Detection Using BCH Code Parity

The basic principle and design of the bit-parallel BCH code
based multiple error detection is explained with an the same20
bit multiplier as shown in Fig. 2. Let us consider a simple case
of BCH(15,5,7), wheren = 15 andk = 5. In this fairly small
example, we consider bit-parallel PB multiplier over GF(25).
Let us consider the first row as a BCH code. Then, asn = 15
andk = 5, the following expression is obtained:

M(x) = C4x4 +C3x3 +C2x2 +C1x+C0 (9)

xn−kM(x) = xn−k(C4x4 +C3x3 +C2x2 +C1x+C0)

= C4x14+C3x13+C2x12+C1x11+C0x10.(10)



Fig. 5. Example patterns for BCH based cross parity code basedcorrection
for a 64-bit multiplier

The parity check bits are generated by the following:

P(x) = xn−kM(x) modg(x). (11)

Let us consider the generator polynomial to beg(x) = x10+
x8 + x5 + x4 + x2 + x + 1. Then parity expression for the first
row for 6-bit detection will be,

P(x) = p9x9 + p8x8 + p7x7 + p6x6 + p5x5 + p4x4 + p3x3

+p2x2 + p1x1 + p0 (12)

We consider a 3 bit correcting BCH code hence it can detect
6 bit errors in a single code word. So to detect multiple errors
in a 5 bit code, we need ten parity bits. The ten parity bits are
given by, where,p0 = c0+c2+c4, p0 = d0+d2+d4+e0+e1+
e2+e3, p1 = c0+c1+c2+c3+c4, p1 = d0+d1+d2+d3+d4,
p2 = c0 + c1 + c3, p2 = d0 + d1 + d3 + e1 + e2 + e3, p3 = c1 +
c2+c4, p3 = d1+d2+d4+e0+e2+e3, p4 = c0+c3+c4, p4 =
d0+d3+d4+e0+e2, p5 = c0+c1+c2, p5 = d0+d1+d2+e2,
p6 = c1+c2+c3, p6 = d1+d2+d3+e0+e3, p7 = c2+c3+c4,
p7 = d2 +d3 +d4 + e1, p8 = c0 + c2 + c3, p8 = d0 +d2 +d3 +
e0 + e1 + e3, p9 = c1 + c3 + c4, p9 = d0 +d3 +d4 + e0 + e2.

Example pattern for BCH code based cross parity code is as
shown in Fig. 5. Here we considered the 6 bit error detectable
BCH code in each row. In each column we used simple parity
codes as that in case of the hamming based scheme. Hence
it can detect 2 errors in each column and 6 errors on each
row. This means that our technique can correct up to certain
12 bit errors. Some of the pattern examples are highlighted in
colors in Fig. 5. Similar colour indicate the multiple errorin
the same group.

E. Cross Codes Over Digit Serial Multipliers

In this subsection we have extended our proposed cross par-
ity scheme over more practical multiplier such as a word level
multiplier or a digit serial multiplier. For experimental cases
we have considered a 163-bit digit serial multiplier that isthe
standard size multiplier for secure ECC operations set by NIST
and FIPS. As far the contribution concerned, this is the first
approach to best of the authors knowledge in synthesizing a
163-bit multiple error correctable digit serial approach.This is
because the known error detectable and correctable techniques
are better suited for bit parallel multipliers structures as they
give very huge area overhead because of the parallel complex
error detection, decoding and correction part that runs parallel
to the actual multiplier logic.

In this section we have made and attempt to evaluate
the complexity of our proposed scheme over such a digit
serial multiplier architecture to better understand the space
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Fig. 6. Area for various multiplier sizes

complexity. The digit serial multiplication is designed using a
single accumulator multiplier architecture. The multiplication
algorithm is as shown in Algorithm 1 [15].

Algorithm 1:
Input : A(x) = ∑m−1

i=0 ai.xi, B(x) = ∑m−1
i=0 bi.xi, P(x).

Out put : C(x) = A(x).B(x)modP(x).
Step1:C = 0.
Step2: f or i = 0 to ⌈m/D⌉ - 1 do
Step3:C = Bi.A+C.
Step4:A = A.αD.
Step5:end f or
Step6: return (C mod P(x))

IV. EXPERIMENTAL RESULTS

This section explains the experimental results of our pro-
posed cross parity based error correction method. The behav-
ioral model of both Hamming and BCH based code are im-
plemented using VHDL and checked for their functional cor-
rectness using Modelsim simulator. The schemes are checked
and verified for bit parallel multiplier of various sizes such as
10, 15, 20, 32, 48, 64 and 90- bit multiplier structures. The
designs are then synthesized using Synopsys design compiler.
Variation in area, power of these designs are evaluated using
both 180nm and 90nm TSMC technologies.

A. Area and Power Analysis of Proposed Implementation

Fig. 6 shows the space consumptions of bit parallel multipli-
ers of various sizes. Fig. 7 and Fig. 8 reports the area of error
correcting blocks (includes the parity generator) in both 180
and 90nm technology. It is very much obvious from Fig. 7 and
Fig. 8 that the space consumption of BCH based technique is
only slightly higher than the Hamming based cross code. This
is because of the fact that the area intensive decoder sections
of both the codes are replaced by simple cross parity based
error detector and corrector as mentioned in Section III.

The area overhead of the proposed cross parity based
method is depicted in Table I. It is observed for the experimen-
tal analysis that the area overhead for both BCH and Hamming
based schemes are remarkably close. The area overhead for a
very simple 10-bit multiplier is only 142%. As the multiplier
size grows the percentage area overhead due to the parity
generation circuit and the correction logic is getting smaller
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Fig. 8. Error detection and correction block area of BCH cross parity code

and eventually for a 90-bit multiplier that can correct multiple
error is just only 101%. This is quite smaller as compared to
the classic multiple error correction schemes based on only
single error correction code. Even though the design is not
entirely dealing with all error patterns, it is very unlikely
that some pattern that can occur outside the scope of the
proposed scheme. It is because of the fact that the probability
of the radiation particle interference that can cause multiple
bit flip is for example only 1 in 1 million clock cycle. Hence
our proposed scheme can provide excellent error masking
capability with area overhead as less as 101%.

TABLE I

AREA OVERHEAD COMPARISION OFVARIOUS MULTIPLIER SIZES

No. of bits Hamming BCH

10 142% 160%
15 123% 152%
20 121% 140%
32 108% 120%
48 105% 116%
64 104% 114%
90 101% 106%

Table II compares our cross parity code approach with other
error correction schemes available in open literature. Fora fair
comparison, we have used the 32-bit multiplier. It shows that
our method can correct more number of errors with lesser area
overhead as compared to the other well known designs.

The power dissipation of our proposed scheme has been
analysed. Fig. 9 and Fig. 10 compares the power consumption
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Fig. 9. Power consumption of hamming code based scheme
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Fig. 10. Power consumption of BCH based cross parity scheme

of both hamming and BCH based designs. As they have
comparable area overhead, the power dissipation is roughly
close to each other as well.

B. Experimental Analysis of 163-bit Digit Serial Multiplier

It is known that the bit parallel multipliers are mainly
used in application that needs high speed smaller multiplier
size. For much complex computation the classic bit parallel
multipliers can not be used as the area complexity simple
explodes as the multiplier size increases. Hence we use digit
serial multipliers that brings up a trade of between the area
and the performance. Hence our scheme has been verified
over more realistic and practically applicable 163-bit digit
serial multiplier. The area overhead of the 163-bit digit serial
multiplier with both hamming and BCH code based cross
parity scheme have been analyzed. Fig. 11 shows the bar chart
of the area overhead for the 163 bit multiplier for different
digit sizes. We have considered digit sizes of 2, 4, and 6.
The overhead plot clearly indicates that the space overhead
significantly reduces for higher digit size of the digit serial
multiplier.

To complete the design flow, the proposed architecture is
implemented using RTL synthesizable VHDL code. also the
design is synthesized with 0.18µm (1.8V supply voltage)
technology using Synopsys design compiler tools. the back end
process, place and route, is done using cadence EncounterT M

tool set. The final layout of the 163-bit multiplier design is
shown in Fig. 12. The layout area , using 6 metal layer, is
1.84 mm2. We have generated the physical layout of the 163-
bit digit serial multiplier design with the hamming code using



TABLE II

COMPARISON WITH OTHER APPROACHES FOR32-BIT MULTIPLIER

Property Masoleh et al. 2004 [16] Mathew et al. 2008 [12] BCH [14] Cross Parity (Ham) Cross Parity (BCH)

#errors correction single single 3 Errors up to 6 Errors up to 12 Errors
Coding technique Hamming LDPC Classic BCH Hamming + Simple Parity BCH + Simple Parity

Overhead >100% >100% 150.4% 108% 120.4%
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Fig. 11. Area overhead of error detection and correction block for 163 bit
multiplier

Fig. 12. Layout of the 163-bit multiplier with Cross Parity Code Correction
Block

Cadence SoC Encounter. Fig. 12 shows the generated layout
of the digit serial multiplier.

V. CONCLUSION AND FUTURE EXTENSION

This paper proposed a novel multiple error correction
scheme based on cross parity codes in order to address the
temporal fault in circuits mainly occurring due to the radiation
interference. The authors have explained the proposed scheme
by taking finite field multipliers as example circuits where
radiation interference and attacks based on controlled radiation
have been reported. With the new proposed scheme authors
have come up with addressing the issue of multiple error
correction capability and area overhead. With the cross parity
codes, the complex decoding blocks have been replaced and
the correction is done using the inherent error detection
capabilities of the codes itself. With the new approach, the
90-bit multiple error correctable multiplier has just 101%area
overhead. The authors have also analyzed their technique in

practically applied digit serial multiplier circuit and the area
overhead is 170% for a 163-bit digit serial multiplier with
digit size 6. To the best of authors knowledge, this is the first
approach for error correction in a digit serial multiplier that
can correct more than 3 errors. The future extension of this
work includes analyzing the fault coverage of the circuit also
extend the method for a generic error correctable deign for a
higher multiplier sizes.
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