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ABSTRACT
An automated top-down design flow to achieve physical designof
Analog/Mixed-Signal Systems-on-Chip (AMS-SoCs) is difficult,
especially for nano-CMOS. Process variation effects have profound
impact on the performance of silicon versus layout design. In this
paper metamodels, (surrogate models) and Particle Swarm Opti-
mization (PSO) have been combined in an automated physical de-
sign flow for fast design exploration of AMS-SoCs. Neural network
based non-polynomial metamodels that handle large numbersof
design parameters, are used to predict the statistical process vari-
ation effects instead of exhaustive Monte Carlo simulations. The
PSO algorithm is used for optimization of the AMS-SoC compo-
nents using their metamodels instead of the actual circuit.The PSO
algorithm followed a two step approach: local and global. The
physical design of a Phase Locked Loop (PLL) is considered asa
case study circuit. The proposed design flow is approximately 5
times faster while the error is under 2% compared to the Monte
Carlo analysis.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—VLSI (very
large scale integration)
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1. INTRODUCTION AND MOTIVATION
Modern consumer electronic devices are Analog/Mixed-Signal

Systems-On-Chips (AMS-SoCs). Design of these AMS-SoCs presents
specific challenges as the design of analog and digital circuits in-
volves two distinct approaches. For example, the digital design
is performance driven, whereas the analog design is specification
driven. When AMS-SoCs are fabricated using nano-CMOS, their
circuits are strongly impacted by the imperfections of manufactur-
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ing processes [1]. However, design decisions are often based on
nominal (rather than statistical) values of circuit attributes under
the assumption that all transistors are alike. Thus, designdecisions
based on nominal data are not correct because the used data are
either overestimations or underestimations of actual (silicon) data
(i.e. design-to-silicon gap).

Process variations have an increasing effect on circuits asthe
technology is scaling past 100 nm [3],[2] with more dramaticeffect
on analog circuits [5]. It is essential to produce a process variation
resilient design to increase the production throughput andreduce
the chip cost.

The simulation analysis for process variation is usually done us-
ing a large number of Monte Carlo simulations. To reduce the
amount of time it takes to produce the analysis, different techniques
have been introduced such as symbolic analysis, hierarchical statis-
tical analysis, and regression based approaches. For a simple cir-
cuit, it is possible to produce a process robust design just from the
understanding of the behavior of that circuit. For large circuits it
is time consuming to run large amount of simulations for process
variation analysis due to high complexity of the circuit. The pri-
mary goal of this paper is to reduce the time-to-market constraints
that are enforced on the design time to create a process resilient de-
sign of the circuit. This paper proposes the use of neural network
based metamodels that can capture the circuit output in small and
large ranges of the design parameters which can then be used for
process variation analysis and also for circuit optimization. Then,
a Particle Swarm Optimization (PSO) algorithm performs thede-
sign exploration over the non-polynomial metamodels to quickly
converge to a target design.

2. CONTRIBUTIONS & PRIOR RESEARCH
Thenovel contributions of this paper are:

• A novel design flow that combines non-polynomial meta-
models and particle swarm optimization for fast nanoscale
process variation resilient mixed-signal design exploration.

• Accurate neural network based metamodels are proposed for
frequency, power, jitter and locking time of the PLL system.

• Statistical process variation analysis over the metamodels in-
stead of the actual circuit are performed and are shown to be
much faster without significant loss of accuracy.

• A particle swarm optimization algorithm is presented for global
optimization and process variation analysis.



Design optimization approaches to produce process variation tol-
erant design have being proposed in the existing literature. In [4],
variability is estimated for frequency acquisition in digitally con-
trolled oscillators. In [10], PVT-tolerant PLLs are proposed. A
PVT-tolerant amplitude controller is proposed in [7] to minimize
the phase noise of an LC-VCO. A PVT-tolerant low-jitter digital
PLL is presented in [6]. The above circuit-specific approaches are
not top-down AMS-SoC design flows and cannot handle large cir-
cuits with full-blown parasitics as the exclusive use of SPICE does
not make them easily scalable. The current paper will thus signifi-
cantly advance the state-of-the art in AMS-SoC design exploration.
Particle swarm optimization (PSO) has been successfully used on
op-amp optimization in [9]. The design of an RF CMOS distributed
amplifier is done in [8] using the PSO algorithm.

3. PROPOSED DESIGN FLOW USING NON-
POLYNOMIAL METAMODELS AND PAR-
TICLE SWARM OPTIMIZATION (PSO)

3.1 The Proposed Fast/Accurate Design Flow
This section briefly discuses the proposed fast design flow for

fast and yet accurate process variation resilient optimization of the
mixed-signal systems. After the creation of the physical design, the
design characteristics of the PLL has changed from the schematic,
as expected. Usually comprehensive manual design iterations fol-
low to adjust the physical design to bring the circuit back tothe de-
sired specifications. Then Monte Carlo or corner analysis follows
to conduct process variation study. If the circuit does not pass the
process variation specifications then more manual labor is needed
to adjust the design and more simulations are required for this it-
erative flow. The proposed design flow uses neural network based
metamodels that predict the characteristics of the PLL. Thephysi-
cal design parametric netlist is parameterized and Latin Hypercube
Sampling (LHS) is used to create two data sets for training and ver-
ification of the neural network model. The neural network based
non-polynomial metamodels are created based on the training data
set and then verified. The accuracy of the metamodels is required
to be very high to be able to predict process variation effects. For
each particle in the particle swarm optimization algorithm, a Monte
Carlo analysis is run on the model if the output of the model is
within the optimization constraints of frequency. This optimization
effectively can optimize the circuit on a global scale and also ac-
count for process variation of the circuit. The final parameters are
then used to adjust the physical design. This design flow reduces
the amount of manual labor down to two physical design iterations
considerably reducing the design process time.

3.2 The Case Study Circuit PLL in Brief
The PLL, which is shown in Fig. 1, provides a good example of

a mixed signal system and is a good candidate for the application
of our methodology.
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Figure 1: Block diagram of a phase locked loop.

The PLL has distinct components performing different functions
and hence their parameters need to be tuned for process varia-
tion analysis and optimization. The following design and process
parameters were considered: For the LC-VCO,WnLCV CO and
WpLCV CO, the width of NMOS and PMOS,L the common length
of both transistors, andToxn andToxp for the oxide thickness of
the NMOS and PMOS. For the divider,WnDIV andWpDIV , the
width of NMOS and PMOS,L the common length of both tran-
sistors, andToxn andToxp for the oxide thickness of the NMOS
and PMOS. For the charge pump,WnCP andWpCP the width of
NMOS and PMOS, andL the common length of both transistors.
For the phase detector,WnPD andWpPD the width of NMOS
and PMOS, andL the common length of both transistors.

4. PROCESS VARIATION ANALYSIS USING
NEURAL NETWORK METAMODELS

4.1 Non-polynomial metamodeling using feed
forward neural networks

Neural network models are composed of a mass of fairly simple
computational elements and rich interconnections betweenthem.
They operate in a parallel and distributed fashion which resembles
biological neural networks. Most neural networks have someform
of initial “training” rule in which the weights of connections are
adjusted on the basis of presented patterns.

A multiple layer neural network consists of an input, a nonlin-
ear activation function in a hidden layer, and a linear activation
function in the output layer. This makes multilayer networks very
flexible and powerful due to their ability to represent nonlinear as
well as linear functions. The multilayer network needs to have at
least one non-linear function layer, otherwise a composition of lin-
ear functions becomes just another linear function. The linear layer
function output is:

vi =

s∑

i=1

wjixi +wj0, (1)

wherewji is the weight connection between thejth component
in the hidden layer and theith component of the inputxi. The
nonlineartanh activation function used for the hidden layer has
the following format:bj(vj) = tanh(λvj). The network training
is performed to minimize the least squares criterion between the
predicted (̂yk) and actual (yk) responses:E =

∑n

k=1
(yk − ŷk)

2.
The input data set is generated from SPICE simulations, is the

same for every metamodel and is generated using LHS. LHS sup-
ports any amount of planes and is proven to work better than Monte
Carlo due to the more even distribution of points with still the ran-
dom factor that helps to detect nonlinearity. LHS divides each plane
(parameter) into Latin squares and randomly picks a point from
each square. Output is generated for each run from a SPICE sim-
ulation saving each needed value to its own data set. Hence, each
metamodel will have its own target data set. Since the input data set
has a large dynamic range, either normalization or standardization
of the input data can improve numerical stability. If not, the train-
ing of higher values can outweigh the lower and neural network
will not train properly. In this paper, the data sets are normalized to
mean 0 and standard deviation 1, as experimental studies showed
that the normalization is easier to handle than standardization of
data even though neural networks performed much better withei-
ther than without one.

The validation and test data must be also normalized using the
statistics (µ and σ) that were computed from the training data.
Since a neural network is created for each desired output there is



no need to standardize the output. The output standardization is
usually used if there are more than one output and they are in dif-
ferent order, hence affecting the way weights converge during the
learning process. The statistical data is then collected tocalculate
root mean square error (RMSE) and coefficient of regression (R2)
values for both sets. Since there may be numerous metamodels
created from the same sample set. RMSE andR2 are the metrics
used for goodness of fit. The created model may fit perfectly the
training data set even though it may not qualify as a good model to
represent the output for the given process at other points. Hence the
verification data set is created so that the points are at the different
locations than the sample data. If the verification dataset RMSE
and R2 values do not differ much from the training values, then the
model has trained correctly, otherwise it must have been overfitted
or trained improperly. If the neural model did not train correctly,
the training parameters of the model can be adjusted or additional
sample points can be collected from the circuit simulation.Other-
wise the neural network can act as an accurate metamodel for the
PLL circuit. A total of 200 simulations were needed to createthe
metamodels.

4.2 Proposed Method for Statistical Process Vari-
ation Analysis

In a typical approach, Monte Carlo (or its derivatives) are usedon
the actual circuits (i.e. netlists). This is prohibitively slow. In our
approach, the non-polynomial metamodels are used instead,thus
speeding up significantly the statistical process variation analysis.

A Monte Carlo (MC) analysis of the PLL circuit containing full-
blown parasitics is performed first for comparison purposes. The
mean(µ) and standard deviations (σ) of the 4 Figures-of-Merit
(FoMs) are presented in Table 1. It may be noted thatthe process-
ing time for 1000 MC runs on the actual circuit (i.e. netlist) was
approximately 5 days.

In the current non-polynomial metamodel-based design flow,the
process variation analysis is conducted over the metamodels. The
MC analysis is performed on the metamodels that show the best
fit. The results are compared with the 1000 circuit Monte Carlo
simulations. The PDFs extracted from the Monte Carlo analysis on
the neural networks is shown in Fig. 2. The statistical parameters
of these PDFs are also presented in Table 1.

5. PROPOSED PARTICLE SWARM OPTI-
MIZATION (PSO) ALGORITHM

The PSO algorithm, uses multiple particles to find a solution
based on the cost function. The particle movement is calculated
based on the local intelligence of each particle which is offset us-
ing global knowledge. The steps of the approach are shown in Al-
gorithm (1). Each particle location information holds a 35 dimen-
sional location, where each dimension corresponds to a parameter.
The algorithm starts at a random location of each parameter for
each particle, with random velocity. When the information is ac-
quired from the cost functionf(pi) the minimum global position is
retained inf(g), while the local position is saved for each particle
in pi. With each iteration of the loop, while the amount of iteration
is not reached, the particles keep searching for a minimum solution
in the design space by updating the particle velocity vectorvi.

For the calculation of cost function, the Monte Carlo analysis is
done around thexi parameter points. To minimize the amount of
calculations the analysis is only done on the frequency metamodel
first. If the mean and standard deviation is within the specifications,
then the rest of the metamodels are used to calculate the meanand
standard deviation for other FoMs. Before the calculation of the
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Figure 2: Statistical analysis of the FoMs of the PLL using the
neural network metamodels.

cost value is done, all the values are brought to the same power to
even their weight composition on the circuit.

6. RESULTS AND CONCLUSIONS
PSO is used for optimization using neural network metamodels.

Two optimization cases are considered in this paper. The first case
optimizes the average case, while the worst case scenario iscon-
sidered in the second case. A total of 35 parameters were usedfor
both optimization cases. For Monte Carlo analysis each parameter
is varied by 5% around the mean for process variation. The opti-
mization results are shown in Table 2.

In this paper it is shown that neural network based metamodels
can closely follow the behavior of a circuit for process variation and
global optimization. On an example PLL system, the models were
generated from the physical layout netlist for 4 different compo-
nents. An error under 2% has been observed in the models for pro-
cess variation analysis for mean and standard deviation. The PSO
algorithm has been successfully used to bring the circuit back to
specifications, even though the physical layout did not meetthem.
The processing time for running 1000 Monte Carlo analysis onthe
PLL system was approximately 5 days, in comparison to 200 simu-
lations needed to create the metamodels and running the algorithm.
The proposed design flow has reached a speedup of roughly 5×

over the Monte Carlo analysis without any iterative modifications
to the physical layout.
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