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ABSTRACT

An automated top-down design flow to achieve physical desfgn
Analog/Mixed-Signal Systems-on-Chip (AMS-SoCs) is diffic
especially for nano-CMOS. Process variation effects havfopnd
impact on the performance of silicon versus layout desigrthis
paper metamodels, (surrogate models) and Particle Swaitin Op
mization (PSO) have been combined in an automated physeal d
sign flow for fast design exploration of AMS-SoCs. Neurakak
based non-polynomial metamodels that handle large nundfers
design parameters, are used to predict the statisticabgsoeari-
ation effects instead of exhaustive Monte Carlo simulatiomhe
PSO algorithm is used for optimization of the AMS-SoC compo-
nents using their metamodels instead of the actual circbig.PSO
algorithm followed a two step approach: local and global.e Th
physical design of a Phase Locked Loop (PLL) is considereal as
case study circuit. The proposed design flow is approximédiel
times faster while the error is under 2% compared to the Monte
Carlo analysis.

Categories and Subject Descriptors

B.7.1[Integrated Circuits]: Types and Design Styles—VLSI (very
large scale integration)
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1. INTRODUCTION AND MOTIVATION

Modern consumer electronic devices are Analog/Mixed-&ign
Systems-On-Chips (AMS-SoCs). Design of these AMS-SoCseite
specific challenges as the design of analog and digital itsrauw
volves two distinct approaches. For example, the digitaigie
is performance driven, whereas the analog design is spstoific
driven. When AMS-SoCs are fabricated using nano-CMOSr thei
circuits are strongly impacted by the imperfections of nfactur-

Permission to make digital or hard copies of all or part of tiork for

personal or classroom use is granted without fee providatldbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyooiherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

GLSVLSIS12Viay 3-4, 2012, Salt Lake City, Utah, USA.

Copyright 2012 ACM 978-1-4503-1244-8/12/05 ...$10.00.

ing processes [1]. However, design decisions are oftendbase
nominal (rather than statistical) values of circuit attitds under
the assumption that all transistors are alike. Thus, defggisions
based on nominal data are not correct because the used data ar
either overestimations or underestimations of actuak¢si) data
(i.e. design-to-silicon gap).

Process variations have an increasing effect on circuitheas
technology is scaling past 100 nm [3],[2] with more drameffect
on analog circuits [5]. It is essential to produce a procesgtion
resilient design to increase the production throughput raddce
the chip cost.

The simulation analysis for process variation is usuallyedos-
ing a large number of Monte Carlo simulations. To reduce the
amount of time it takes to produce the analysis, differectingques
have been introduced such as symbolic analysis, hieralctatis-
tical analysis, and regression based approaches. For &siinp
cuit, it is possible to produce a process robust design jost the
understanding of the behavior of that circuit. For largewis it
is time consuming to run large amount of simulations for pesc
variation analysis due to high complexity of the circuit. €Tpri-
mary goal of this paper is to reduce the time-to-market cairds
that are enforced on the design time to create a procesenesié-
sign of the circuit. This paper proposes the use of neuraVorit
based metamodels that can capture the circuit output inl smeal
large ranges of the design parameters which can then be osed f
process variation analysis and also for circuit optimaati Then,
a Particle Swarm Optimization (PSO) algorithm performsdke
sign exploration over the non-polynomial metamodels takjyi
converge to a target design.

2. CONTRIBUTIONS& PRIOR RESEARCH

Thenove contributions of thispaper are:

e A novel design flow that combines non-polynomial meta-
models and particle swarm optimization for fast nanoscale
process variation resilient mixed-signal design explorat

e Accurate neural network based metamodels are proposed for
frequency, power, jitter and locking time of the PLL system.

e Statistical process variation analysis over the metansddel
stead of the actual circuit are performed and are shown to be
much faster without significant loss of accuracy.

e A particle swarm optimization algorithm is presented fatwgl
optimization and process variation analysis.



Design optimization approaches to produce process vamitl-
erant design have being proposed in the existing literatur4],
variability is estimated for frequency acquisition in dajiy con-
trolled oscillators. In [10], PVT-tolerant PLLs are propds A
PVT-tolerant amplitude controller is proposed in [7] to imiize
the phase noise of an LC-VCO. A PVT-tolerant low-jitter didi
PLL is presented in [6]. The above circuit-specific apprescare
not top-down AMS-SoC design flows and cannot handle large cir
cuits with full-blown parasitics as the exclusive use of SPdoes
not make them easily scalable. The current paper will thgisifsi
cantly advance the state-of-the art in AMS-SoC design eaptm.
Particle swarm optimization (PSO) has been successfuliy os
op-amp optimization in [9]. The design of an RF CMOS distr#ali
amplifier is done in [8] using the PSO algorithm.

3. PROPOSED DESIGN FLOW USING NON-
POLYNOMIAL METAMODELSAND PAR-
TICLE SWARM OPTIMIZATION (PSO)

3.1 TheProposed Fast/Accurate Design Flow

This section briefly discuses the proposed fast design flow fo
fast and yet accurate process variation resilient optiticizaf the
mixed-signal systems. After the creation of the physicalgte the
design characteristics of the PLL has changed from the satiem
as expected. Usually comprehensive manual design itasatd-
low to adjust the physical design to bring the circuit backede-
sired specifications. Then Monte Carlo or corner analydisvis
to conduct process variation study. If the circuit does ragspthe
process variation specifications then more manual laboeesied
to adjust the design and more simulations are required feritth
erative flow. The proposed design flow uses neural networ&das
metamodels that predict the characteristics of the PLL. Aryesi-
cal design parametric netlist is parameterized and Latiperyube
Sampling (LHS) is used to create two data sets for trainirhvan-
ification of the neural network model. The neural networkeohs
non-polynomial metamodels are created based on the tgadkita
set and then verified. The accuracy of the metamodels isreztjui
to be very high to be able to predict process variation esfeEor
each particle in the particle swarm optimization algorittaivonte
Carlo analysis is run on the model if the output of the model is
within the optimization constraints of frequency. Thisioptation
effectively can optimize the circuit on a global scale argbadc-
count for process variation of the circuit. The final paraenetre
then used to adjust the physical design. This design flowcesiu
the amount of manual labor down to two physical design iienat
considerably reducing the design process time.

3.2 TheCase Study Circuit PLL in Brief

The PLL, which is shown in Fig. 1, provides a good example of
a mixed signal system and is a good candidate for the apiplicat
of our methodology.
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Figure 1: Block diagram of a phase locked loop.

The PLL has distinct components performing different fiorcs
and hence their parameters need to be tuned for process varia
tion analysis and optimization. The following design andgass
parameters were considered: For the LC-VAB,r.cvco and
WyLcoveo, the width of NMOS and PMOS, the common length
of both transistors, an@,., and7..;, for the oxide thickness of
the NMOS and PMOS. For the dividé#/ nprv andWpp -, the
width of NMOS and PMOS/L the common length of both tran-
sistors, andl,.,, andT,,, for the oxide thickness of the NMOS
and PMOS. For the charge punip;ncp andWp.p the width of
NMOS and PMOS, and the common length of both transistors.
For the phase detectonpp and Wpp, the width of NMOS
and PMOS, and. the common length of both transistors.

4. PROCESSVARIATIONANALYSISUSING
NEURAL NETWORK METAMODELS

4.1 Non-polynomial metamodeling using feed
forward neural networks

Neural network models are composed of a mass of fairly simple
computational elements and rich interconnections betwiem.
They operate in a parallel and distributed fashion whiclemgsdes
biological neural networks. Most neural networks have séonm
of initial “training” rule in which the weights of connectis are
adjusted on the basis of presented patterns.

A multiple layer neural network consists of an input, a nenli
ear activation function in a hidden layer, and a linear atitn
function in the output layer. This makes multilayer netvwsvery
flexible and powerful due to their ability to represent noahlr as
well as linear functions. The multilayer network needs teehat
least one non-linear function layer, otherwise a compasitif lin-
ear functions becomes just another linear function. Trealimayer
function output is:

vi =Y wiiws + wjo, (1)
=1

wherew;; is the weight connection between thith component
in the hidden layer and thih component of the input;. The
nonlineartanh activation function used for the hidden layer has
the following format:b;(v;) = tanh(Av;). The network training
is performed to minimize the least squares criterion betwtbe
predicted ¢i) and actual ) responsestl = >"7_, (yx — 9x)>.

The input data set is generated from SPICE simulations,eis th
same for every metamodel and is generated using LHS. LHS sup-
ports any amount of planes and is proven to work better thamlo
Carlo due to the more even distribution of points with stitk ran-
dom factor that helps to detect nonlinearity. LHS divideshgalane
(parameter) into Latin squares and randomly picks a poorfr
each square. Output is generated for each run from a SPIGE sim
ulation saving each needed value to its own data set. Heach, e
metamodel will have its own target data set. Since the inatat set
has a large dynamic range, either normalization or staizion
of the input data can improve numerical stability. If not thain-
ing of higher values can outweigh the lower and neural ndtwor
will not train properly. In this paper, the data sets are radized to
mean 0 and standard deviation 1, as experimental studiegesgho
that the normalization is easier to handle than standdidizaf
data even though neural networks performed much betteraisth
ther than without one.

The validation and test data must be also normalized usiag th
statistics [, and o) that were computed from the training data.
Since a neural network is created for each desired output ike



no need to standardize the output. The output standarmlizéti
usually used if there are more than one output and they arié-in d
ferent order, hence affecting the way weights convergenduttie
learning process. The statistical data is then collectexhltulate
root mean square error (RMSE) and coefficient of regresgii (
values for both sets. Since there may be numerous metamodelsf%m
created from the same sample set. RMSE RAdare the metrics
used for goodness of fit. The created model may fit perfectdy th
training data set even though it may not qualify as a good frtode
represent the output for the given process at other poirgaceéithe fo e ass ze ag ze : " ooyt
verification data set is created so that the points are atitteeedht ' '
locations than the sample data. If the verification dataséSR
and R values do not differ much from the training values, then the
model has trained correctly, otherwise it must have beerfitteel

or trained improperly. If the neural model did not train cmtty,

the training parameters of the model can be adjusted oriaddit
sample points can be collected from the circuit simulatiother- o
wise the neural network can act as an accurate metamoddidort ° =
PLL circuit. A total of 200 simulations were needed to crethie @
metamodels.

4.2 Proposed Method for Statistical ProcessVari- " = ¢t © T 0 T k' ¢ LS
ation Analysis ((c)) Locking Time ((d)) Horizontal Jitter

In atypical approach, Monte Carlo (or its derivatives) esedon
the actual circuits (i.e. netlists)This is prohibitively slow. In our
approach, the non-polynomial metamodels are used instieasl,
speeding up significantly the statistical process vaniaioalysis.

A Monte Carlo (MC) analysis of the PLL circuit containing lful
blown parasitics is performed first for comparison purposHse
mean (u) and standard deviationg') of the 4 Figures-of-Merit
(FoMs) are presented in Table 1. It may be noted thaprocess-

ingtimefor 1000 M C runson theactual circuit (i.e. netlist) was 6. RESULTSAND CONCLUSIONS
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Figure 2: Statistical analysis of the FoMs of the PLL using th
neural network metamodels

cost value is done, all the values are brought to the samergowe
even their weight composition on the circuit.

approximately 5 days. PSO is used for optimization using neural network metansdel
In the current non-polynomial metamodel-based design flosv, Two optimization cases are considered in this paper. Thechise
process variation analysis is conducted over the metamodéle optimizes the average case, while the worst case scenaganis

MC analysis is performed on the metamodels that show the bestsidered in the second case. A total of 35 parameters werefosed
fit. The results are compared with the 1000 circuit Monte €arl  both optimization cases. For Monte Carlo analysis eachnpetier

simulations. The PDFs extracted from the Monte Carlo aiatys is varied by 5% around the mean for process variation. Thie opt
the neural networks is shown in Fig. 2. The statistical patans mization results are shown in Table 2.
of these PDFs are also presented in Table 1. In this paper it is shown that neural network based metarsodel
can closely follow the behavior of a circuit for process a#idn and
global optimization. On an example PLL system, the modelewe
5. PROPOSED PARTICLE SWARM OPTI- generated from the physical layout netlist for 4 differeatmpo-
MIZATION (PSO) ALGORITHM nents. An error under 2% has been observed in the modelsder pr

The PSO algorithm, uses multiple particles to find a solution cess variation analysis for mean and standard deviatios. PBO
based on the cost function. The particle movement is catedila  algorithm has been successfully used to bring the circidk tta

based on the local intelligence of each particle which iseiffis- specifications, even though the physical layout did not rtfesn.
ing global knowledge. The steps of the approach are showr-in A The processing time for running 1000 Monte Carlo analysithen
gorithm (1). Each particle location information holds a 3&en- PLL system was approximately 5 days, in comparison to 200-sim
sional location, where each dimension corresponds to anedes. lations needed to create the metamodels and running thethigo
The algorithm starts at a random location of each parameter f The proposed design flow has reached a speedup of rougkly 5
each particle, with random velocity. When the informatisrac- over the Monte Carlo analysis without any iterative modifimas

quired from the cost functioyi(p;) the minimum global positionis  to the physical layout.
retained inf(g), while the local position is saved for each particle
in p;. With each iteration of the loop, while the amount of itevati Acknowl edgements
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For the calculation of cost function, the Monte Carlo anialys
done around the; parameter points. To minimize the amount of
calculations the analysis is only done on the frequency mede! 7. REFERENCES
first. If the mean and standard deviation is within the spestiidns, [1] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L
then the rest of the metamodels are used to calculate the amelan Ji, S. R. Nassif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer.
standard deviation for other FOMs. Before the calculatibthe High-Performance CMOS Variability in the 65nm Regime



Table 1: Before Optimization: Statistical Figures of Mafithe PLL.

Circuit Monte Carlo Neural Network Monte Carlo Error
Mean (1) | Standard Deviatiofic) | Mean () | Standard Deviatioic) | Mean (1) | Standard Deviatiofio)
Frequency 2.66 GHz 10.95 MHz 2.66 GHz 10.96 MHz 0.0% 0.11%
Power 0.90 mW 0.21 mW 0.90 mW 0.21 mW 0.14% 1.3%
Locking Time 3.24us 1.07pus 3.22us 0.99us 0.7% 6.93%
Horizontal Jitter| 2.79 ps 1.32 ps 2.80 ps 1.32 ps 0.12% 0.5%
Table 2: After Optimization: Statistical Figures of Merittbe PLL.
1+ o Optimization 1+ 30 Optimization
Mean (1) | Standard Deviations) | Mean (1) | Standard Deviationo)
Frequency 2.75 GHz 28.64 MHz 2.74 GHz 29.14 MHz
Power 0.99 mW 0.28 mW 0.98 mW 0.27 mW
Locking Time 4.69us 1.15us 4.61us 1.13us
Horizontal Jitter| 5.82 ps 3.42 ps 5.97 ps 3.34 ps

Algorithm 1 The Proposed Particle Swarm Optimization (PSO) for

the PLL Components.

1:
2:
3:

Set N - number of particles

Start at a random location with uniform distribution

Get current positionz; and use it initially for best particle po-
sition f(p;) and f(g) = min(p;)

4: v; U(ming_ 3, mazxp ;)
5: Initializeiter=0
6: Initialize weight for swarm effecp,
7: Initialize weight for swarm effecp,,
8: Initialize weight for velocity effect (acceleration/inertia)
9: whileiter<maz;terations dO
10: for eachido
1L Vi = Wi + 0pTp(Pi — 1) + 0gTe(9 — T1)
12: Ti 4 Ti + 04
14: update position: p; < x;
15: if f(pi) < f(g) then
16: g < Dpi
17: end if
18: end if
19:  end for
20: end while
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