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Abstract— This paper presents a design methodology for mul- providing the correct information to the external world.ceet
tiple bit error detection and correction in Galois field arithmetic  research proposes various schemes to overcome such attacks
circuits such as the bit parallel polynomial basis (PB) multipliers The conventional approach for concurrent error detection

over GF(2™M). These multipliers are crucial in most of the b idered ¢ . bet th
cryptographic hardware designs and hence it is essential to enseir may be considered as a one-lo-oneé mapping between the

that they are not vulnerable to security threats. Security threas Output of the functional unit, which is represented as aryina
arising from injected soft (transient) faults into a cryptographic ~ vector of lengthk, and a codeword which is a binary vector
circuit can expose the secret information, e.g. the secret key, of length n [13]. Namely, a codeword represents a Boolean
to an attacker. To prevent such soft or transient fault related gy re5sion that is a minterm. The Hamming distance between
attacks, we consider fault tolerance as a method of mitigation. . L
Most of the current fault tolerant schemes are only multiple bit .the co<_jewords must be greater _than O_ne,’ Ot.herW'Se' it is
error detectable but not multiple bit error correctable. Keeping Impossible to detect an error. This restriction increades t
this in view, we present a multiple bit error correction scheme implementation cost of the functional unit and the implemen
based on the BCH.COdES, with a_n efficient pit-parallel Chien tation cost of the checker [_‘]_5] The most Commomy used
search module. This paper defails the design procedure as gyt tolerant schemes for single error detection/coivect
well as the hardware implementation specs. Comparison with . .
existing methods demonstrate improved area, and reduced delay are the errolr detecFlon and recalculation methods,. and the
performances. error correcting designs [11] [9]. In the error detectiord an
recalculation scheme, the concurrent error detectionuitiyc
|. INTRODUCTION (CED) monitors for an error occurrence and, in case of an
Online error detection and correction has received muelnror, it rolls backs and recalculate again. The drawbackief
attention in recent years as a candidate for attack toleramproach is that it often increases the time redundancy. An-
cryptographic hardware design and to certain extent faaither commonly used approach is tRemodular redundancy
tolerance as well [1]. With low operating voltage levels an(NMR). In NMR, the actual circuitry is replicatetll times
low noise margins, digital designs are often vulnerable #nd the decision of whether the resultant output is coriect i
various faults [2]. In present day communication deviceg)< decided by a voting circuitry. The main pitfall of this methis
tographic hardware is an inevitable part. The cryptogmphine increase in space redundancy depending upon the number
hardware often needs to store some information hidden ahbit error corrections we need. In [5], a single error cotian
order to ensure high degree of information security. THSEEC) scheme based on the Hamming codes is proposed, while
Faults resulting in incorrect output are mainly due to redtyr in [10] this method has been extended to the LDPC codes and
occurring faults or due to malicious attacks. The formehe method in [6] used to synthesize efficient circuits.
can be detected with various testing techniques, whereas th  Motivation and Contribution: From the literature review
latter cannot be detected with the testing schemes prgsemtiade, it is evident that efficient error correcting designs
available. Clearly, this can result in catastrophe, if undéor Galois field based arithmetic circuits are not fully ex-
tected [8]. Attacks against such cryptography hardware grered. Our proposed scheme overcomes most of the design
often classified into two categories: invasive and nonsiwe drawbacks mentioned above. Firstly, this is the first known
The invasive attacks are based on reverse engineering apgroach for bit parallel multiple error correction based o
hence require costly equipment. The non-invasive method, BCH codes for the multipliers over GE™), where as all
the other hand, exploits the implementation weakness of tte existing techniques considered only single bit err@. A
device and is also known as the side channel attacks [3].altpart of the design, we also propose an efficient bit parallel
is also noted that, hacking of information within the chip igmplementation of the Chein search module within the error
possible by introducing hardware Trojans within the prgcesorrecting circuitry. Secondly, most of the discussedrecoo-
variation allowance of the chip [4]. In these types of atiackrection schemes impose much higher time redundancy where
the attacker may try to acquire the hidden information bgs our proposed multiple bit error correction scheme runs in
injecting random events, e.g. through transient faults the parallel with the logic, hence requires less time overh@ae.
hardware [7]. To keep our information hidden, we need tadded delay is only due to the decoding part of the proposed
mask these injected faults and ensure that the devices ksepeme. In the parity based error correction schemes [iL], [5



the error in the parity blocks can not be detected, where s, where 0<i <m-—1, are the coordinates & andB re-

in the proposed scheme, the errors in the parity blocks aeectively. The formulation is based on three matrices hame
detected as well as the final outputs corrected. We have a#som x m reduction matrixQ, a lower triangular matrix. and
derived the closed form expressions for the parity prealicti an upper triangular matrid . The matrix based multiplication

block. is formulated as an inner product (IP) network with two vecto
The remainder of this paper is organized as follows. Seautputsd and e respectively, where,

tion Il explains the basic fundamentals of the Galois field = -

arithmetic and Polynomial basis multiplication. In Sentidl, d = L? @

we present the design methodologies of the BCH code based € = Ub 2

multiple error correction scheme. Section IV presents tr\ﬁh P
. ; ) ereb=
experimental results, and finally Section V concludes tipepa
with future extensions of our research.

[bo, by, by, ..., bm 1], a vector column of the coor-
dinates and' represents thg transpose. The matricésand
U are defined in [12].

The multiplication outputs are given by the equation:

tc=d+Q'g (3)

Il. PRELIMINARIES

For completeness, this section presents the preliminafies
Galois field (GF) arithmetic, which is necessary for both thahere the matrixQ, which is dependent on the irreducible
multiplier as well as the BCH coding scheme. polynomials, can be derived as shown in [12] add=

For every prime numbep, there exists a Galois field, [Co.C1,C2;-..,Cm-1]" is the output bits. For the sake of clarity,
also known as the finite fields, over the set(@Fhaving We depict a small example below.
p elements with special elements 0 and 1 as the additiveExample 1: Let A andB be two multiplicands over GR3)
and multiplicative identities respectively. It is possibto generated with the irreducible polynomiB(x) = x3 4 x+ 1
extend the fields over GP) to a field that consists op™ With A= [ag, a1, 8] andB = [bo, b1, by]. Then,A andB can also
elements, wherenis a nonzero positive integer. This extendelie represented a& = apx? +ai;x+ao and B = bpx? + byx+
field over the set Gfp™) is known as the extension of thebo in the polynomial form. The produdE(x) = A(x) - B(x)
field over GRp). Let ‘+ and *~ represent the addition and ModP(x). Now, C(X) = (apx® +a1X+ao) - (b2.X* +byx+bo) =
multiplication operations on the field elements. Then(@5  (&2b2)X* + (a1bz +azb1)x3 + (agby -+ a1b1 + a2bo)x* + (agbs +
forms a finite field if it forms a commutative ring with identit @1bo)X+(aobo). Let us consider the outputs of the IP networks
over these two operations. The finite fields over(®Fand d ande. In the GH23) arithmetic,d ande are column vectors
their extensions over GE™), have particular interest in digital having 3 and 2 elements respectively. et [do, d1,d2] and
electronics owing to the field elements 0 and 1 only. e= [eo,€1]. ThenC(x) can be rewritten as,

The finite fields over GR™) can be generated with monic _ 3 2
ireducible polynomials of the forr(x) = x™1+ 3™ 2c;.X, C( = e+ exC + X + +dix+ o “)
wherec; € GF(2) [14]. Other than elements 0 and 1 the field
consists of elements that are multiples of the elenogralso A B
known as the primitive element, wheteis the root ofP(x) m m
i.e. P(a) =0. P(x) is also known as therimitive polynomial i %/m
of the field. To make sure that the operations over the field are
finite, any element in the field having power2™ 1 is reduced _ o h
to an element with powek 2™ by using the primitive | M~ Pit PB GF Multiplier B%'*er?eﬁiﬁﬁnb't
polynomial P(x). The set of element$§0,1,a,a?,...,a™ 1}
forms the polynomial basis (PB). Any eleméxne GF(2™) can
be represented using the elements in PB. Ad® ¢ GF(2™)
with, A(x) = s taix, andB(x) = s thix, , wherea;, by € ECm
GF(2). The polynomial basis multiplication d&(x) and B(x) :
over GH2™) is defined asC(x) = A(X) - B(x) modP(x). EC2 BCH Decoder
To simplify the classical way of finite field multiplication, EC1
Mastrovito proposed an algorithm and equivalent hardware
implementation in [16]. Later in [12] an algorithm based
on Masterovito’'s scheme has been presented along with the
reduced complexity bit parallel PB multiplier hardware olur ﬁF QF

Cm c1 Co Pk P2 | P1 Po

Synd Generator &

work, we adopt the same multiplier structure as that of [12].
The brief formulation of the PB bit parallel multiplier is o
explained in the following for the completeness of this pape
Let A and B are the two multiplicands withA =
[30,31,327 . _’am71] andB = [b07b17b2’ . ,7bm71}. Thea;s and Fig. 1. BCH code based multiple error correction scheme.
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It is evident from earlier discussions that the output eletsie previous bit, which shows that a memory is being used. In
must be closed within G2). In order to do this, we define the proposed scheme, we use a parallel BCH encoder which
the product overP(x) = x3+x+1 as C(x) = A(x) - B(x) encodes the message as a whole block and uses no memory.
modP(x). This makes sure that the resulting product termEhe binary BCH codes are generalized Hamming codes and
will be folded back to the elements in GF). Hence we were first proposed by A. Hocquenghem in 1959. In 1960
have, x® = x+ 1, x* = x? + x. Substituting these in Eq. (4) Bose and Ray Chaudhuri did an independent research and
gives, C(x) = (dp +€1)x? + (di + € +e1)x+ (do + €). The came up with the same idea. Hence the BCH code is named
above classical multiplication procedure can be representfter the three discoverers. BCH codes detect and correct
in a matrix form using Eqg. (3) and, subsequently, the circuiatndomly located bit errors in a stream of information bits
design directly follows from that. according to its error correction capabilitt). The burst error
correcting codes, such as the Reed-Solomon codes, correct
multiple errors within a symbol or multiple symbols, but all
the bit errors must be within theame symbol. The most
interesting aspect of the BCH codes over Reed-Solomon codes
for our purpose is the simplicity in decoding the codewords.
Here, we only need to figure out the bit's location and not
the correct value, as in the case of Reed-Solomon codes.
Co The basic block diagram of the generic multiple bit error
G . Syndrome Generator correction circuit using the binary BCH code is shown in
: Fig. 1. The overall design contains a parity prediction kjoc
S2t Ce s3 s1 a syndr_ome generation block, an error-locator p(_)lynomial

generation block, and a decoder, apart from the bit parallel
multiplier circuit.

Pk P1 Po

Cm

Error Locator

B. BCH Encoder and Decoder Design

Sigt ... Sig2 Sigl This section details the complete design of a BCH paral-

lel encoder and decoder with an example. The bit parallel
multiplier architecture is adopted from [12]. The general
representation of BCH code BCH(n,k,d), wheren is the
size of the codeword or, in other words, it is the sum of the
message lengttk), and the number of parity bitg) used for
encoding, andl is the minimum distance (dmin) between the
codewords. The possible BCH codes for> 3 andt < 2™1

Correction Block

is given by,
coutn cou,  coup 9 y
. _ om-1
Fig. 2. Syndrome generator and BCH decoder. Block length: n=2 ®)
Number of check bits: n—k<mt (6)
Minimum distance: dpjn > 2t+1 @)

IIl. M ULTIPLE BIT ERRORCORRECTION

A. BCH Code The codeword is formed by adding the remainder after
dividing the shifted message block by a special polynomial
Hiled the generator polynomig(x). All the codewords will
e a multiple of the generator polynomial. The generator
olynomial is not just a minimal primitive polynomial, but
combination of several polynomials corresponding to the
powers of the primitive elemert in GF(2™). In other words,
(x) is the least common multiple of the minimal polynomials
ver the various powers of the primitive elemant(powers

The Bose-Choudhury-Hocquenghem (BCH) codes belo
to the family of cyclic codes in which the message bloc
is encoded using a polynomial(x), called the generator
polynomial. The generator polynomial is the least commo
multiplier (LCM) of the minimal polynomial for the selected
powers with respect to GE™), provided that each of the
minimal polynomial should appear only once in the produc
Here,'the message 1S treateq asa th’le block ar]d encoded a,a?,...,a%, wheret is the error correction capability
at a time rather than encoding continuously as in the case Q

. of the code).
convolution codes. The encoder block possesses no memo h

. . . . “Then,

hence no information of the previous message blocks. This
style of encoding can be thought of as sliding an encoding g(x) = lem(my (x), ma(X), ..., M (X)), 8)
window over the message bits. In the conventional BCH codes,
the LFSR structure is used to encode incoming message itsere my(x), my(X),...,my(X) are the minimal polynomials
one at a time. Hence, the present encoded bit depends ondabresponding to the various powersaflt is also noted that



TABLE |
GF(2*) ELEMENTS INPB.

[ GF(2*) elements] Bit vector |

0 0000
1 0001
a 0010
a? 0100
a’ 1000
at 0011
a® 0110
ab 1100
a’ 1011
a’ 0101
a? 1010
qlo 0111
all 1110
al? 0100
ald 1111
al4 1001

where,pp=Co+Co+C4, po=do+ 0o+ ds+e+e€+er+e3,
PL=Co+C1+Co+C3+Cq Pr=0Co+0dy+dz2+d3+dg, p2=
Co+Ci+C3 P2=0o+di+d3+e+e+es p3=Ci1+C2+Ca,
ps=0d1+dx+ds+€+€+€3 Ps=Co+C3+Cs Pg=0Co+
ds3+ds+ep+e, ps=Co+C1L+Co pPs=do+dp+dr+ ey,

Pg = C1+C2+C3, pg =01 +0d2+d3+ep+es3, p7=Co+C3+Cy,

p7 =dp+d3+ds+ep, pg=Co+Co+C3, Pg= o+ 0dp+d3+
€+€e +€3 Pog=C1+C3+Cq Pog=0do+0d3+ds+ey+e.

Hence, the final BCH encoded codeword for the bit parallel

GF multiplier circuit is given as,

EX) = e+ caxt®+ cox?+ coxtt 4 coxt0+ pox®
+ pex° £ prx’ o+ pex’ + psx’ + pax’

+  p3xC+ p2xX@ + pix+ Po. (19)

The parity bits (check bits) are generated by a parallelichec
bit generation unit as shown in Fig. 1. The resulting paritg b
along with the multiplier outputs are passed to the syndrome

every even power of a primitive element has the same mininggneration blocks as shown in Fig. 2. For three bit error

polynomial, hence Eq. (8) will be simplified to,

g(x) = lem(my(x), ma(X), ..., Mx—1(X)). 9)

correction capability(t = 3), we need siX2xt) syndromes to
be generated. The syndromes help us to determine whether the
computed multiplication results are error free or not. Iseca

The basic principle and design of the bit-parallel BCHf error free computation, the syndromes will be evaluated
code based multiple error correction scheme is explaindd wto zero. If the syndromes are nonzero, then that flags us the

an example as follows. Let us consider a simple case
BCH(15,5,7), wheren =15 andk = 5. In this fairly small
example, we consider bit-parallel PB multiplier over @8.
Let c=[co, C1,Cy, C3, C4] be the outputs of the multiplier. Then

M (x) (10)
X"KM (%)

= C4X4 + C:J,X3 + C2X2 + C1X+Co
XK (cax* + cax® + X2 + CrX+ Co)

Cax + caxt3 4 cox2 + caxtt + coxt0, (11)

sincen= 15 andk =5 in this case.
The parity check bits are generated by,

P(x) =x"*M(x) modg(x). (12)

Let a be the primitive element of GB*), as shown in
Table 1. Here,P(x) = x* +x+1 is the primitive polynomial.
The three minimal polynomialay (x), mg(x), and ms(x) are
given by,

m(x) = x*+x+1 (13)
mg(x) = X*4+xXC+x4+x+1 (14)
ms(X) = X2+4x+1. (15)

For three bit error correctioft = 3), the generator polyno-
mial for constructing the codeword is then given by,

g(X) = ICm(ml(X)a rng(X), m5(X)) (16)
Substituting values of Eq. (13), Eqg. (14) and Eq. (15)
Eg. (16) we get,

g(x) = X048 1+ x* 3%+ x 41
Substituting Eq. (17) in Eq. (12) gives,
P(x)

(17)

pox® + pex® + prx’ + pex® + psx® + pax* + pax®
+p2X + pax* + Po (18)

@froneous computation.
The syndromes are calculated as follows,

S(x) =E(x) |x:1,or,...,012t

The syndrome decoding is done by using the well known
Peterson-Gorenstein-Zierler algorithm. Peterson notitet
we need only a few of the syndromes to effectively correct the
bit errors. In our case for three bit error correction we need
to calculate only syndromeSl, S3, andSb. The generalized
equation for syndromes for the given exampl@&6H (15,5,7)
are given as follows,

SL = s13a3 +s12a2 + slla +s10, S3 = s33a3 + s3202 +
s31a +530, S5 = 5303 + s52a2 4 510 + $50, S10= €4+ C3+
C2+Co+ Pg+ P7+ Pa+ Po, SL11=Cp+C1+Co+ Po+ P7+ Ps+
Pa+ P1, S12=C3+Cy+C1+Co+ Ps+ Ps+ Ps+ P2, SL13=Cs+
C3+C2+C1+ Pg+ P7+ Pe + P3, S30= C4+Co+ Po + Ps + Pa+
Po, S31=C4+C3+ Po+ Pg+ Pa+ P3, SB2=C4+C2+ Po+ P7+
P4+ P2, S33=C4+C3+C2+C1+ Po+ Pg+ P7+ Ps+ Pa+ P3+
P2+ P1, S50= C4+C2+ C1+ P+ Pg+ Pe + Ps + P3+ P2+ Po,
51 =C4+C3+C1+Co+ Pg+ P7+ Ps+ Pa+ P2+ P1, 2=
C4+C3+C1+Co+ Pg+ P7+ Ps+ Pa+ P2+ P1, SS3=0.

Determining whether the computation is error free is not
sufficient, and we also need to correct these errors in case
if they are present. For this, we need to compute the error

(20)

inositions or error locations of the erroneous bits. To de-

termine the error positions effectively, we need to decode
the syndromes. The syndrome decoding block of the BCH
based error correction technique contains an error locator
polynomial generator block that finds the root of the error
locator polynomial and a decoder that eventually correuts t
erroneous bits based on the computed error position. Fsr thi
purpose computed syndrome values are passed on to the error



Syndrome Generator of the error locator polynomial are based on exhaustivechear

Enor Locator methods. A widely known algorithm for finding the roots is

Correction block , i the Chien search algorithm, in which all the possible values
' of the primitive elementa, ranging froma®, a,...,a?™1,
are induced into the error locator polynomial to check ifythe
satisfy the polynomial. In the proposed design, a bit pakall
implementation of the Chien search algorithm is implemente
In particular, we proposed a scheme in which the root of the
error locator polynomial is checked only among the powers of
the primitive elementr corresponding to the bit positions of
the message bits, i.e. the multiplier output bits. The radts
the error locator polynomial corresponding to the paritts bi
are omitted in order to reduce the hardware complexity. For a
5-bit multiplier, we check whethew, a?, a3 a*, a® are roots
of the error locator polynomial, which in turn corresponds
to the bit positionscy,c3,Cz,c1 and ¢ in the output of the
multiplier. In other words, ifa is a root of the error locator
polynomial, it says that the bit; of the multiplier is erroneous,
etc. The decoder corrects the erroneous bit(s) correspgndi
to the information provided by the parallel root search kloc
Based on this design principle, we have also extended the
Fig. 3. Block with area analysis of a 45-bit GF multiplier wiBkbit error design to a 16-bit bit parallel PB multiplier over G}ﬁ) and
correction. . . . 45
to a 45-bit bit parallel PB multiplier over GB*).

BCH Check-bit Generation

GF Multiplier

locator polynomial computation block, as shown in Fig. 2 Fc T
the three(t = 3) bit error correction, we have threg = 3) ) =3,',Li‘"§m,@,,m
coefficients for the error locator polynomial. Letl, 02, and
03 be the three coefficients of the error locator polynomial.

Then, o1 = Sl, 02 = ((SI?°V) + ) /(S12+ V), 03 = »
(S134+ B+ 91).

The above three equations give the coefficiants o2, and
o3 of the error locator polynomial.
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IV. EXPERIMENTAL RESULTS

We have designed the BCH based error correction scheme in
Fig. 4. ModelsiniM simulation results of BCH code based multiple errorVHDL_' For simulation a”q validation _Of the error_ cqrrectlon
correction. technique, we have considered 16-bit and 45-bit bit pdralle
PB multipliers as design examples. Since the error cooecti
Improved Error Locator Design: Once we have the error logic is independent of the multiplier logic, this scheme ca
locator polynomial, the roots of the polynomial will giveeth be extended for bit parallel multipliers of any size. Theiges
error locations. The traditional algorithms for finding tloets was simulated using Modelsi and was synthesized using



TABLE Il
COMPARISON WITH OTHER APPROACHES

[ Property [ M2] [ [10] [ Proposed| Proposed| Proposed]
#errors correction|  single single | 3 Errors | 4 Errors | 5 Errors
Coding technique| Hamming | LDPC BCH BCH BCH

Overhead >100% 100% | 150.4% | 164.04% | 170.4%

the SynopsyS” (180nm technology) design compiler. Fig. 5on the BCH codes. We also presented an efficient bit parallel
shows the area overhead for the various designs with 2, 3 structure of the iterative Chien search algorithm for filgdin
and 5 error correction for a 45-bit multiplier. Fig. 3 showshe roots of the error locator polynomial, comprising less
the area of the various blocks in our proposed multiple errarea and time complexity. The experimental results showed
correction scheme. Fig. 4 shows the snapshot of a typi¢hht the proposed scheme has a lower complexity in terms
Modelsim™ simulation result. During the simulations, weof area and delay compared with the NMR based techniques.
have introduced faults into the multiplier outputs randpmlAlso, compared to SEC techniques the hardware overhead is
for checking the error correction capability of the propbsewell within acceptable margins despite its enhanced céipabi
scheme. The highlighted parts in Fig. 4 show one amomgture extensions of the proposed work will include fully
the many testing values. We have introduced errors in thestable versions of the proposed scheme for higher coritylex
intermediate stages of the multiplier, which in turn gavbit parallel and digit serial architectures. Power and ylela
multiple bit errors at the multiplier output. In this case weapecs will be explored with advanced testable designs.

have errors at bit positions 1, 2, and 16, however the
values show the corrected final output from the BCH decoder.
A|though the examp|e designs Considered 2to5 b|t errdﬁ_] A. Reyhani-MasoIeh, and M. Anwar Hasan, “Fault Detectidrchitec-

- e ; . tures for Field Multiplication Using Polynomial Bases”, |IEETrans.
correction capability, based on the theory presented is thi Computers, vol. 55, No. 9, Sept. 2006.

paper, we can easily extend its capability to more than five] Mitra S., Seifert N., Zhang M., Shi Q and Kim K, “Robust Sgm
bits. The back end process, place and route, is done for a 45- BES'%” Vgth Buzglgzs?:ﬂ bEr;%rogeSIllence”, IEEE Computafl. 38,

. T : . umber 2, pp. 43-52, Feb. .
bit GF multiplier with three error correctlpn capabilitying [3] C. R. Moratelli, E. Cota, M. S. Lubaszewski “A Cryptogtap Core
the Cadence Encountét tool set. The final layout of the Tolerant to DFA Fault Attacks”, Journal Integrated Cirswdind Systems,
design is shown in Fig. 6. pp-14-21, 2007. o .

[4] Y. Jin, Y. Makris, “Hardware Torjans in Wireless Cryptaghic ICs”,
IEEE Design & Test Computers, January/February 2010.
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