
BCH Code Based Multiple Bit Error Correction in
Finite Field Multiplier Circuits

M. Poolakkaparambil1, J. Mathew2, A. M. Jabir1, Dhiraj K. Pradhan2 and S. P. Mohanty3
1Dept. of Comp. Sci. & Electronics, Oxford Brookes University,UK

2Department of Computer Science, University of Bristol, UK
3Department of Comp. Sci. & Engineering, University of North Texas

Abstract— This paper presents a design methodology for mul-
tiple bit error detection and correction in Galois field arithmetic
circuits such as the bit parallel polynomial basis (PB) multipliers
over GF(2m). These multipliers are crucial in most of the
cryptographic hardware designs and hence it is essential to ensure
that they are not vulnerable to security threats. Security threats
arising from injected soft (transient) faults into a cryptographic
circuit can expose the secret information, e.g. the secret key,
to an attacker. To prevent such soft or transient fault related
attacks, we consider fault tolerance as a method of mitigation.
Most of the current fault tolerant schemes are only multiple bit
error detectable but not multiple bit error correctable. Keeping
this in view, we present a multiple bit error correction scheme
based on the BCH codes, with an efficient bit-parallel Chien
search module. This paper details the design procedure as
well as the hardware implementation specs. Comparison with
existing methods demonstrate improved area, and reduced delay
performances.

I. I NTRODUCTION

Online error detection and correction has received much
attention in recent years as a candidate for attack tolerant
cryptographic hardware design and to certain extent fault
tolerance as well [1]. With low operating voltage levels and
low noise margins, digital designs are often vulnerable to
various faults [2]. In present day communication devices, cryp-
tographic hardware is an inevitable part. The cryptographic
hardware often needs to store some information hidden in
order to ensure high degree of information security. The
Faults resulting in incorrect output are mainly due to naturally
occurring faults or due to malicious attacks. The former
can be detected with various testing techniques, whereas the
latter cannot be detected with the testing schemes presently
available. Clearly, this can result in catastrophe, if unde-
tected [8]. Attacks against such cryptography hardware are
often classified into two categories: invasive and non-invasive.
The invasive attacks are based on reverse engineering and
hence require costly equipment. The non-invasive method, on
the other hand, exploits the implementation weakness of the
device and is also known as the side channel attacks [3]. It
is also noted that, hacking of information within the chip is
possible by introducing hardware Trojans within the process
variation allowance of the chip [4]. In these types of attacks,
the attacker may try to acquire the hidden information by
injecting random events, e.g. through transient faults, into the
hardware [7]. To keep our information hidden, we need to
mask these injected faults and ensure that the devices keep

providing the correct information to the external world. Recent
research proposes various schemes to overcome such attacks.

The conventional approach for concurrent error detection
may be considered as a one-to-one mapping between the
output of the functional unit, which is represented as a binary
vector of lengthk, and a codeword which is a binary vector
of length n [13]. Namely, a codeword represents a Boolean
expression that is a minterm. The Hamming distance between
the codewords must be greater than one, otherwise, it is
impossible to detect an error. This restriction increases the
implementation cost of the functional unit and the implemen-
tation cost of the checker [15]. The most commonly used
fault tolerant schemes for single error detection/correction
are the error detection and recalculation methods, and the
error correcting designs [11] [9]. In the error detection and
recalculation scheme, the concurrent error detection circuitry
(CED) monitors for an error occurrence and, in case of an
error, it rolls backs and recalculate again. The drawback ofthis
approach is that it often increases the time redundancy. An-
other commonly used approach is theN-modular redundancy
(NMR). In NMR, the actual circuitry is replicatedN times
and the decision of whether the resultant output is correct is
decided by a voting circuitry. The main pitfall of this method is
the increase in space redundancy depending upon the number
of bit error corrections we need. In [5], a single error correction
(SEC) scheme based on the Hamming codes is proposed, while
in [10] this method has been extended to the LDPC codes and
the method in [6] used to synthesize efficient circuits.

Motivation and Contribution: From the literature review
made, it is evident that efficient error correcting designs
for Galois field based arithmetic circuits are not fully ex-
plored. Our proposed scheme overcomes most of the design
drawbacks mentioned above. Firstly, this is the first known
approach for bit parallel multiple error correction based on
BCH codes for the multipliers over GF(2m), where as all
the existing techniques considered only single bit error. As
a part of the design, we also propose an efficient bit parallel
implementation of the Chein search module within the error
correcting circuitry. Secondly, most of the discussed error cor-
rection schemes impose much higher time redundancy where
as our proposed multiple bit error correction scheme runs in
parallel with the logic, hence requires less time overhead.The
added delay is only due to the decoding part of the proposed
scheme. In the parity based error correction schemes [1], [5],

the error in the parity blocks can not be detected, where as
in the proposed scheme, the errors in the parity blocks are
detected as well as the final outputs corrected. We have also
derived the closed form expressions for the parity prediction
block.

The remainder of this paper is organized as follows. Sec-
tion II explains the basic fundamentals of the Galois field
arithmetic and Polynomial basis multiplication. In Section III,
we present the design methodologies of the BCH code based
multiple error correction scheme. Section IV presents the
experimental results, and finally Section V concludes the paper
with future extensions of our research.

II. PRELIMINARIES

For completeness, this section presents the preliminariesof
Galois field (GF) arithmetic, which is necessary for both the
multiplier as well as the BCH coding scheme.

For every prime numberp, there exists a Galois field,
also known as the finite fields, over the set GF(p) having
p elements with special elements 0 and 1 as the additive
and multiplicative identities respectively. It is possible to
extend the fields over GF(p) to a field that consists ofpm

elements, wherem is a nonzero positive integer. This extended
field over the set GF(pm) is known as the extension of the
field over GF(p). Let ‘+’ and ‘·’ represent the addition and
multiplication operations on the field elements. Then GF(pm)
forms a finite field if it forms a commutative ring with identity
over these two operations. The finite fields over GF(2), and
their extensions over GF(2m), have particular interest in digital
electronics owing to the field elements 0 and 1 only.

The finite fields over GF(2m) can be generated with monic
irreducible polynomials of the formP(x) = xm−1 +∑m−2

i=0 ci.xi,
whereci ∈ GF(2) [14]. Other than elements 0 and 1 the field
consists of elements that are multiples of the elementα, also
known as the primitive element, whereα is the root ofP(x)
i.e. P(α) = 0. P(x) is also known as theprimitive polynomial
of the field. To make sure that the operations over the field are
finite, any element in the field having power> 2m−1 is reduced
to an element with power< 2m−1 by using the primitive
polynomial P(x). The set of elements{0,1,α ,α2, . . . ,αm−1}
forms the polynomial basis (PB). Any elementA∈GF(2m) can
be represented using the elements in PB. LetA,B ∈ GF(2m)
with, A(x) = ∑m−1

i=0 aixi, andB(x) = ∑m−1
i=0 bixi, , whereai, bi ∈

GF(2). The polynomial basis multiplication ofA(x) andB(x)
over GF(2m) is defined asC(x) = A(x) · B(x) modP(x).
To simplify the classical way of finite field multiplication,
Mastrovito proposed an algorithm and equivalent hardware
implementation in [16]. Later in [12] an algorithm based
on Masterovito’s scheme has been presented along with the
reduced complexity bit parallel PB multiplier hardware. Inour
work, we adopt the same multiplier structure as that of [12].
The brief formulation of the PB bit parallel multiplier is
explained in the following for the completeness of this paper.

Let A and B are the two multiplicands withA =
[a0,a1,a2, . . . ,am−1] andB = [b0,b1,b2, . . . ,bm−1]. Theais and

bis, where 0≤ i ≤ m−1, are the coordinates ofA and B re-
spectively. The formulation is based on three matrices namely,
an m×m reduction matrixQ, a lower triangular matrixL and
an upper triangular matrixU . The matrix based multiplication
is formulated as an inner product (IP) network with two vector
outputs~d and

→
e respectively, where,

~d = L~b (1)

~e = U~b, (2)

where~b = [b0,b1,b2, . . . ,bm−1]
T , a vector column of the coor-

dinates andxT represents thex transpose. The matricesL and
U are defined in [12].

The multiplication outputs are given by the equation:

~c = ~d +QT~e, (3)

where the matrixQ, which is dependent on the irreducible
polynomials, can be derived as shown in [12] and~c =
[c0,c1,c2, . . . ,cm−1]

T is the output bits. For the sake of clarity,
we depict a small example below.

Example 1: Let A andB be two multiplicands over GF(23)
generated with the irreducible polynomialP(x) = x3 + x + 1
with A = [a0,a1,a2] andB = [b0,b1,b2]. Then,A andB can also
be represented asA = a2x2 + a1x + a0 and B = b2x2 + b1x +
b0 in the polynomial form. The productC(x) = A(x) · B(x)
modP(x). Now,C(x) = (a2x2+a1x+a0) ·(b2.x2+b1x+b0) =
(a2b2)x4+(a1b2+a2b1)x3+(a0b2+a1b1+a2b0)x2+(a0b1+
a1b0)x+(a0b0). Let us consider the outputs of the IP networks
d ande. In the GF(23) arithmetic,d ande are column vectors
having 3 and 2 elements respectively. Letd = [d0,d1,d2] and
e = [e0,e1]. ThenC(x) can be rewritten as,

C(x) = e1x4 + e0x3 +d2x2 ++d1x+d0. (4)

. . . .

BCH Check−bit
Generation

A B

Synd Generator &

BCH Decoder

m−bit PB GF Multiplier

. . .

ECm

EC2

EC1

. . . .

. . . .

c0c1cm

m

mm

m

p0p1p2pk

cout0cout1coutm

Fig. 1. BCH code based multiple error correction scheme.

It is evident from earlier discussions that the output elements
must be closed within GF(23). In order to do this, we define
the product overP(x) = x3 + x + 1 as C(x) = A(x) · B(x)
modP(x). This makes sure that the resulting product terms
will be folded back to the elements in GF(23). Hence we
have, x3 = x + 1, x4 = x2 + x. Substituting these in Eq. (4)
gives, C(x) = (d2 + e1)x2 + (d1 + e0 + e1)x + (d0 + e0). The
above classical multiplication procedure can be represented
in a matrix form using Eq. (3) and, subsequently, the circuit
design directly follows from that.

. . . .

Syndrome Generator

Error Locator

S2t S2 S1

Correction Block

. . .

Sig2 Sig1Sigt

. . . .

. . . .

. . . .

c0
c1

cm

p0p1pk

cout0cout1coutm

Fig. 2. Syndrome generator and BCH decoder.

III. M ULTIPLE BIT ERRORCORRECTION

A. BCH Code

The Bose-Choudhury-Hocquenghem (BCH) codes belong
to the family of cyclic codes in which the message block
is encoded using a polynomialg(x), called the generator
polynomial. The generator polynomial is the least common
multiplier (LCM) of the minimal polynomial for the selected
powers with respect to GF(2m), provided that each of the
minimal polynomial should appear only once in the product.
Here, the message is treated as a whole block and encoded one
at a time rather than encoding continuously as in the case of
convolution codes. The encoder block possesses no memory,
hence no information of the previous message blocks. This
style of encoding can be thought of as sliding an encoding
window over the message bits. In the conventional BCH codes,
the LFSR structure is used to encode incoming message bits
one at a time. Hence, the present encoded bit depends on the

previous bit, which shows that a memory is being used. In
the proposed scheme, we use a parallel BCH encoder which
encodes the message as a whole block and uses no memory.
The binary BCH codes are generalized Hamming codes and
were first proposed by A. Hocquenghem in 1959. In 1960
Bose and Ray Chaudhuri did an independent research and
came up with the same idea. Hence the BCH code is named
after the three discoverers. BCH codes detect and correct
randomly located bit errors in a stream of information bits
according to its error correction capability(t). The burst error
correcting codes, such as the Reed-Solomon codes, correct
multiple errors within a symbol or multiple symbols, but all
the bit errors must be within thesame symbol. The most
interesting aspect of the BCH codes over Reed-Solomon codes
for our purpose is the simplicity in decoding the codewords.
Here, we only need to figure out the bit’s location and not
the correct value, as in the case of Reed-Solomon codes.
The basic block diagram of the generic multiple bit error
correction circuit using the binary BCH code is shown in
Fig. 1. The overall design contains a parity prediction block,
a syndrome generation block, an error-locator polynomial
generation block, and a decoder, apart from the bit parallel
multiplier circuit.

B. BCH Encoder and Decoder Design

This section details the complete design of a BCH paral-
lel encoder and decoder with an example. The bit parallel
multiplier architecture is adopted from [12]. The general
representation of BCH code isBCH(n,k,d), wheren is the
size of the codeword or, in other words, it is the sum of the
message length(k), and the number of parity bits(p) used for
encoding, andd is the minimum distance (dmin) between the
codewords. The possible BCH codes form ≥ 3 andt < 2m−1

is given by,

Block length: n = 2m−1 (5)

Number of check bits: n− k ≤ mt (6)

Minimum distance: dmin ≥ 2t +1 (7)

The codeword is formed by adding the remainder after
dividing the shifted message block by a special polynomial
called the generator polynomialg(x). All the codewords will
be a multiple of the generator polynomial. The generator
polynomial is not just a minimal primitive polynomial, but
a combination of several polynomials corresponding to the
powers of the primitive elementα in GF(2m). In other words,
g(x) is the least common multiple of the minimal polynomials
over the various powers of the primitive elementα (powers
from α,α2, . . . ,α2t , wheret is the error correction capability
of the code).

Then,

g(x) = lcm
(

m1(x),m2(x), . . . ,m2t(x)
)

, (8)

where m1(x),m2(x), . . . ,m2t(x) are the minimal polynomials
corresponding to the various powers ofα. It is also noted that

TABLE I

GF(24) ELEMENTS IN PB.

GF(24) elements Bit vector

0 0000
1 0001
α 0010
α2 0100
α3 1000
α4 0011
α5 0110
α6 1100
α7 1011
α8 0101
α9 1010
α10 0111
α11 1110
α12 0100
α13 1111
α14 1001

every even power of a primitive element has the same minimal
polynomial, hence Eq. (8) will be simplified to,

g(x) = lcm
(

m1(x),m3(x), . . . ,m2t−1(x)
)

. (9)

The basic principle and design of the bit-parallel BCH
code based multiple error correction scheme is explained with
an example as follows. Let us consider a simple case of
BCH(15,5,7), wheren = 15 andk = 5. In this fairly small
example, we consider bit-parallel PB multiplier over GF(25).
Let c = [co,c1,c2,c3,c4] be the outputs of the multiplier. Then,

M(x) = c4x4 + c3x3 + c2x2 + c1x+ c0 (10)

xn−kM(x) = xn−k(c4x4 + c3x3 + c2x2 + c1x+ c0)

= c4x14+ c3x13+ c2x12+ c1x11+ c0x10, (11)

sincen = 15 andk = 5 in this case.
The parity check bits are generated by,

P(x) = xn−kM(x) modg(x). (12)

Let α be the primitive element of GF(24), as shown in
Table I. Here,P(x) = x4 + x + 1 is the primitive polynomial.
The three minimal polynomialsm1(x), m3(x), and m5(x) are
given by,

m1(x) = x4 + x+1 (13)

m3(x) = x4 + x3 + x2 + x+1 (14)

m5(x) = x2 + x+1. (15)

For three bit error correction(t = 3), the generator polyno-
mial for constructing the codeword is then given by,

g(x) = lcm
(

m1(x),m3(x),m5(x)). (16)

Substituting values of Eq. (13), Eq. (14) and Eq. (15) in
Eq. (16) we get,

g(x) = x10+ x8 + x5 + x4 + x2 + x+1 (17)

Substituting Eq. (17) in Eq. (12) gives,

P(x) = p9x9 + p8x8 + p7x7 + p6x6 + p5x5 + p4x4 + p3x3

+p2x2 + p1x1 + p0 (18)

where,p0 = c0+c2+c4, p0 = d0+d2+d4+e0+e1+e2+e3,
p1 = c0 + c1 + c2 + c3 + c4, p1 = d0 + d1 + d2 + d3 + d4, p2 =
c0+c1+c3, p2 = d0+d1+d3+e1+e2+e3, p3 = c1+c2+c4,
p3 = d1 +d2 +d4 + e0 + e2 + e3, p4 = c0 + c3 + c4, p4 = d0 +
d3 + d4 + e0 + e2, p5 = c0 + c1 + c2, p5 = d0 + d1 + d2 + e2,
p6 = c1+c2+c3, p6 = d1+d2+d3+e0+e3, p7 = c2+c3+c4,
p7 = d2 +d3 +d4 + e1, p8 = c0 + c2 + c3, p8 = d0 +d2 +d3 +
e0 + e1 + e3, p9 = c1 + c3 + c4, p9 = d0 +d3 +d4 + e0 + e2.

Hence, the final BCH encoded codeword for the bit parallel
GF multiplier circuit is given as,

E(x) = c4x14+ c3x13+ c2x12+ c1x11+ c0x10+ p9x9

+ p8x8 + p7x7 + p6x6 + p5x5 + p4x4

+ p3x3 + p2x2 + p1x+ p0. (19)

The parity bits (check bits) are generated by a parallel check
bit generation unit as shown in Fig. 1. The resulting parity bits
along with the multiplier outputs are passed to the syndrome
generation blocks as shown in Fig. 2. For three bit error
correction capability(t = 3), we need six(2×t) syndromes to
be generated. The syndromes help us to determine whether the
computed multiplication results are error free or not. In case
of error free computation, the syndromes will be evaluated
to zero. If the syndromes are nonzero, then that flags us the
erroneous computation.

The syndromes are calculated as follows,

Si(x) = E(x)|x=1,α,...,α2t (20)

The syndrome decoding is done by using the well known
Peterson-Gorenstein-Zierler algorithm. Peterson noticed that
we need only a few of the syndromes to effectively correct the
bit errors. In our case for three bit error correction we need
to calculate only syndromesS1, S3, andS5. The generalized
equation for syndromes for the given example ofBCH(15,5,7)
are given as follows,

S1 = s13α3 + s12α2 + s11α + s10, S3 = s33α3 + s32α2 +
s31α +s30,S5= s53α3+s52α2+s51α +s50, s10= c4+c3+
c2+c0+ p8+ p7+ p4+ p0, s11= c2+c1+c0+ p9+ p7+ p5+
p4+ p1, s12= c3+c2+c1+c0+ p8+ p6+ p5+ p2, s13= c4+
c3+c2+c1+ p9+ p7+ p6+ p3, s30= c4+c0+ p9+ p5+ p4+
p0, s31= c4+c3+ p9+ p8+ p4+ p3, s32= c4+c2+ p9+ p7+
p4+ p2, s33= c4+c3+c2+c1+ p9+ p8+ p7+ p6+ p4+ p3+
p2+ p1, s50= c4+c2+c1+ p9+ p8+ p6+ p5+ p3+ p2+ p0,
s51= c4 + c3 + c1 + c0 + p8 + p7 + p5 + p4 + p2 + p1, s52=
c4 + c3 + c1 + c0 + p8 + p7 + p5 + p4 + p2 + p1, s53= 0.

Determining whether the computation is error free is not
sufficient, and we also need to correct these errors in case
if they are present. For this, we need to compute the error
positions or error locations of the erroneous bits. To de-
termine the error positions effectively, we need to decode
the syndromes. The syndrome decoding block of the BCH
based error correction technique contains an error locator
polynomial generator block that finds the root of the error
locator polynomial and a decoder that eventually corrects the
erroneous bits based on the computed error position. For this
purpose computed syndrome values are passed on to the error

Fig. 3. Block with area analysis of a 45-bit GF multiplier with3-bit error
correction.

locator polynomial computation block, as shown in Fig. 2. For
the three(t = 3) bit error correction, we have three(t = 3)
coefficients for the error locator polynomial. Letσ1, σ2, and
σ3 be the three coefficients of the error locator polynomial.

Then, σ1 = S1, σ2 =
(

(S12S3) + S5
)

/(S13 + S3), σ3 =
(S13 +S3+S1S2).

The above three equations give the coefficientsσ1, σ2, and
σ3 of the error locator polynomial.

Fig. 4. ModelsimTM simulation results of BCH code based multiple error
correction.

Improved Error Locator Design: Once we have the error
locator polynomial, the roots of the polynomial will give the
error locations. The traditional algorithms for finding theroots

of the error locator polynomial are based on exhaustive search
methods. A widely known algorithm for finding the roots is
the Chien search algorithm, in which all the possible values
of the primitive elementα, ranging fromα0,α, . . . ,α2m−1,
are induced into the error locator polynomial to check if they
satisfy the polynomial. In the proposed design, a bit parallel
implementation of the Chien search algorithm is implemented.
In particular, we proposed a scheme in which the root of the
error locator polynomial is checked only among the powers of
the primitive elementα corresponding to the bit positions of
the message bits, i.e. the multiplier output bits. The rootsof
the error locator polynomial corresponding to the parity bits
are omitted in order to reduce the hardware complexity. For a
5-bit multiplier, we check whetherα ,α2,α3,α4,α5 are roots
of the error locator polynomial, which in turn corresponds
to the bit positionsc4,c3,c2,c1 and c0 in the output of the
multiplier. In other words, ifα is a root of the error locator
polynomial, it says that the bitc4 of the multiplier is erroneous,
etc. The decoder corrects the erroneous bit(s) corresponding
to the information provided by the parallel root search block.
Based on this design principle, we have also extended the
design to a 16-bit bit parallel PB multiplier over GF(216) and
to a 45-bit bit parallel PB multiplier over GF(245).

Original Design
With Error Correction

2 Error 3 Error 4 Error 5 Error

0

20

40

60

80

100

120

140

160

180

Overhead Analysis

Original
With Error Correction

Fig. 5. Overhead analysis of BCH based error correction scheme.

IV. EXPERIMENTAL RESULTS

We have designed the BCH based error correction scheme in
VHDL. For simulation and validation of the error correction
technique, we have considered 16-bit and 45-bit bit parallel
PB multipliers as design examples. Since the error correction
logic is independent of the multiplier logic, this scheme can
be extended for bit parallel multipliers of any size. The design
was simulated using ModelsimTM and was synthesized using

TABLE II

COMPARISON WITH OTHER APPROACHES.

Property [12] [10] Proposed Proposed Proposed

#errors correction single single 3 Errors 4 Errors 5 Errors
Coding technique Hamming LDPC BCH BCH BCH

Overhead >100% 100% 150.4% 164.04% 170.4%

the SynopsysTM (180nm technology) design compiler. Fig. 5
shows the area overhead for the various designs with 2, 3, 4,
and 5 error correction for a 45-bit multiplier. Fig. 3 shows
the area of the various blocks in our proposed multiple error
correction scheme. Fig. 4 shows the snapshot of a typical
ModelsimTM simulation result. During the simulations, we
have introduced faults into the multiplier outputs randomly
for checking the error correction capability of the proposed
scheme. The highlighted parts in Fig. 4 show one among
the many testing values. We have introduced errors in the
intermediate stages of the multiplier, which in turn gave
multiple bit errors at the multiplier output. In this case we
have errors at bit positions 1, 2, and 16, however thecout

values show the corrected final output from the BCH decoder.
Although the example designs considered 2 to 5 bit error
correction capability, based on the theory presented in this
paper, we can easily extend its capability to more than five
bits. The back end process, place and route, is done for a 45-
bit GF multiplier with three error correction capability using
the Cadence EncounterTM tool set. The final layout of the
design is shown in Fig. 6.

Fig. 6. Layout of 45-bit GF Multiplier with Multiple Error Correction
Feature.

Further, for a given error correction capability, the extra
hardware comes down significantly for larger and more practi-
cal designs. For example, for the 5-, 16-, and 45-bit multipliers
we observed that the extra hardware is 600%, 240%, and
150.4% respectively for 3-bit error correction capability.

V. CONCLUSIONS ANDFUTURE WORK

This paper proposed a technique for designing bit parallel
multiple bit error correctable multipliers over GF(2m) based

on the BCH codes. We also presented an efficient bit parallel
structure of the iterative Chien search algorithm for finding
the roots of the error locator polynomial, comprising less
area and time complexity. The experimental results showed
that the proposed scheme has a lower complexity in terms
of area and delay compared with the NMR based techniques.
Also, compared to SEC techniques the hardware overhead is
well within acceptable margins despite its enhanced capability.
Future extensions of the proposed work will include fully
testable versions of the proposed scheme for higher complexity
bit parallel and digit serial architectures. Power and delay
specs will be explored with advanced testable designs.

REFERENCES

[1] A. Reyhani-Masoleh, and M. Anwar Hasan, “Fault Detection Architec-
tures for Field Multiplication Using Polynomial Bases”, IEEE Trans.
Computers, vol. 55, No. 9, Sept. 2006.

[2] Mitra S., Seifert N., Zhang M., Shi Q and Kim K, “Robust System
Design with Built-In Soft Error Resilience”, IEEE Computer,Vol. 38,
Number 2, pp. 43-52, Feb. 2005.

[3] C. R. Moratelli, E. Cota, M. S. Lubaszewski “A Cryptography Core
Tolerant to DFA Fault Attacks”, Journal Integrated Circuits and Systems,
pp-14-21, 2007.

[4] Y. Jin, Y. Makris, “Hardware Torjans in Wireless Cryptographic ICs”,
IEEE Design & Test Computers, January/February 2010.

[5] J. Mathew, A. M. Jabir, H. Rahaman, D. K. Pradhan, “Single error
Correctable Bit Parallel Multipliers overGF(2m)”, IET Comput. Digit.
Tech., Vol. 3, Iss.3, pp. 281-288,2009.

[6] A. Jabir, D. Pradhan, J. Mathew “GfXpress: A Technique for Synthesis
and Optimization of GF(2m) Polynomials”, IEEE Trans. CAD 27(4),
690–711, 2008.

[7] G. B. Ratanpal, R. D. Williams,and T. N. Blalock, “An On-Chip Signal
Suppression Countermeasure to Power Analysis Attacks”, IEEE Trans.
on dependable and secure computing, vol. 1, no. 3, July 2004.

[8] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the Importance of Elim-
inating Errors in Cryptographic Computations”, Journal of Cryptology,
14, pp. 101–119, 2001.

[9] M. Ciet and M. Joye. Dueck, ”Elliptic Curve Cryptosystemsin the
Presence of Permanent and Transient Faults”, Designs, Codesand
Cryptography, 36(1), July 2005, pp. 33–43.

[10] J. Mathew, J. Singh, A. M. Jabir, M. Hosseinabady and D. K. Pradhan,
“Fault Tolerant Bit Parallel Finite Field Multipliers using LDPC Codes”,
IEEE, 2008.

[11] G. Gaubatz and B. Sunar, ”Robust finite field arithmetic for fault-
tolerant public-key cryptography”, 2nd Workshop on Fault Tolerance
and Diagnosis in Cryptography (FTDC), 2005.

[12] A. Reyhani-Masoleh, and M. Anwar Hasan, “Low ComplexityBit Par-
allel Architectures for Polynomial Basis Multiplication over GF(2m)”,
IEEE Trans. on Computers, Vol.53, No.8, pp.945-959, August 2004.

[13] K. Wu, R. Karri, G. Kuznetsov and M. Goessel: “Low Cost Concurrent
Error Detection for the Advanced Encryption Standard”, International
Test Conference, pp.1242-1248, 2004.

[14] D. K. Pradhan, “A Theory of Galois Switching Functions”, IEEE Trans.
Computers, vol. 27, no. 3, pp.239-248, Mar. 1978.

[15] O. Keren “One-to-Many: Context-Oriented Code for Concurrent Error
Detection” Journal of Electron Test, vol. 26, pp. 337-353, 2010

[16] E. D. Matrovito, “VLSI Achitectures for Computation in Galois Fields.”
Ph.D. thesis, Linkoping University, Linkoping Sweden, 1999.

