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Abstract

Recent studies have shown that an attacker can retrieve

confidential information from cryptographic hardware (e.g.

the secret key) by introducing internal faults. A secure

and reliable implementation of cryptographic algorithms

in hardware must be able to detect or correct such mali-

cious attacks. Error detection/correction (EDC), through

fault tolerance, could be an effective way to mitigate such

fault attacks in cryptographic hardware. To this end, we

analyze the area, delay, and power overhead for design-

ing the S-Box, which is one of the main complex blocks in

the Advanced Encryption Standard (AES), with error de-

tection and correction capability. We use multiple Parity

Predictions (PPs), based on various error correcting codes,

to detect and correct errors. Various coding techniques are

presented, which include simple parity prediction, split par-

ity codes, Hamming, Hsiao, and LDPC codes. The S-Box,

GF(p), and PP circuits are synthesized from the specifica-
tions, while the decoding and correction circuits are com-

bined to form the complete designs. The analysis shows

a comparison of the different approaches characterized by

their error detection capability.

1 Introduction

An important aspect of secure Cryptosystems-on-Chip

(CoC) is it’s ability to detect and recover from malicious

attacks. There are several ways of attacking crypto hard-

ware, that exploit the presence of various side channels in

the hardware to extract the secret information. These at-

tacks observe in a non-intrusive way computational tim-

ing, power variations or electromagnetic radiation of the

device, etc. Attacks based on the Differential Power Anal-

ysis (DPA) and Simple Power Analysis (SPA) attacks sense

the power consumption of the hardware to extract the se-

cret key. These attacks either directly examine the power

traces or carry out statistical operations on the power traces

obtained from the hardware, while the cryptographic algo-

rithms are being executed [1]. Recently, it has been shown

that attackers may be able to reveal secret keys by intro-

ducing internal faults by intrusions [2]. Subsequently, [3]

presents a technique showing how the presence of faults

in the public parameters of an elliptic curve crypto system

(ECC) may expose the secret keys. On chip error masking

techniques such as error correction could be one of the op-

tions to mitigate the above problems. This has motivated us

to consider in this paper the error detection and correction

in the S-Box, which is one of the key block in the AES hard-

ware. Although the paper considers only the S-Box design,

without loss of generality, the technique can be applied to

any logic circuit.

The first step in error correction is error detection. A

number of schemes have been proposed in the literature [21]

for error detection. Concurrent error detection is a process

used to test the operation of a system while it is operating

normally [18]. Various techniques are used in this regard,

which include hardware duplication, parity codes, time re-

dundancy, etc.

In crypto systems such as the ECC, the arithmetic units,

in particular the multipliers over finite fields, comprise the

primary components. As such, it is essential to increase

the reliability of these components against fault injection

and other forms of attacks. Various schemes have been pro-

posed in the literature, which consider concurrent error de-

tection for the finite field multiplications. In [6], a parity-

based approach is used to detect errors in the bit-serial poly-

nomial and normal basis multipliers. A similar technique is

used in [13] for the bit-serial and bit-parallel polynomial ba-

sis multipliers. This scheme is extended to a multi-bit parity

approach in the same paper for error detection in the bit-

serial and bit-parallel polynomial basis multipliers. Based

on interlacing parity codes, another approach is proposed

in [19] for bit-parallel polynomial basis multipliers. In addi-

tion to the parity based approaches, time redundancy is also

used for error detection in finite field multiplications. The

technique of [6] considered the detection of single stuck at

faults in polynomial basis Galois Field multipliers. A sim-

ple parity prediction technique was used for error detection.



Another approach is to scale the inputs of the multipliers

by a factor and at the end of the multiplication, and then

the correctness of the results is checked by one or two divi-

sions [14].

Motivation and Contribution To date, analysis of the

various error detection methods at different redundancy lev-

els has not been addressed in light of cryptographic hard-

ware defined over finite fields. Design choices for a secure

implementation affect performance and overhead in terms

of silicon area. There is usually a trade-off between secu-

rity versus cost of implementation—the more error detec-

tion capability we want, the more we pay in terms of addi-

tion redundancy and reduced performance.

The main objective of this paper is the comparison of

different techniques based on PP. Since the PP technique

does not include any encoding and decoding of the input

operands, and the PP circuits run in parallel with the func-

tional parts of the circuits, the delay penalty is only due

to the output parity generation, and the syndrome decoding

and correction logic. We also investigate the PP hardware

overhead by varying the number of parity bits with different

hamming distances.

The rest of this paper is organized as follows. In Sec-

tion 2, we review the basics of S-Box and other background

material relevant to this paper. In Section 3, we present

the different approaches for error detection and correction.

Section 4 presents the experimental results. Finally, we con-

clude in Section 5.

2 Background

Let GF(pm) denote a set of pm elements, where p is a
prime number and m a non zero positive integer, with two

special elements 0 and 1 representing the additive and mul-

tiplicative identities respectively. In addition let the two

symbols ‘+’ and ‘•’ represent addition and multiplication
operations respectively. Then GF(pm) forms a finite field
(also known as Galois field), if it forms a commutative ring

with identity over these two operators in which every ele-

ment has a multiplicative inverse.

AES and S-Box The S-Box is the most critical compo-

nent for controlling the size and speed in both hardware and

software implementations of the AES algorithm. The S-

Boxes of the Data Encryption Standard (DES), AES, and

Camellia have similar structures, consisting of multiplica-

tive inversion on a Galois field and affine transformations.

However, the inversion is the most computationally inten-

sive operation. In this paper, we focus on error detection

in the AES S-Box. The SubByte and Inv SubByte operate

on a state by substituting every byte in the state with a byte

in a substitution table, which we generally refer to as the

S-Box. There are two transformations in the S-Box, which

first calculates the multiplicative inverse in the finite field

over GF(28), and second applies the affine transformation
over GF(2). The S-Box is invertible and is used for inverse
SubByte transformation. Besides the implementation of the

S-Boxes of the SubBytes transformation, the implementa-

tions of the other transformations of the AES algorithm, i.e.

ShiftRows, MixColumns, AddRoundKey, are straight for-

ward and relatively simple. There are S-Boxes with parity

checking [22]. The area overhead and the fault coverage

is very dependent on the concrete implementations of the

S-Boxes with parity checking. The AES encrypts 128-bit

plaintext data blocks by using a 128-bit user key. The de-

cryption takes 10 rounds using the last-round key to recover

the plaintext, that was originally encrypted using 10 rounds.

A detailed explanation can be found in [10].

2.1 Synthesis and Optimization

We consider the technique for synthesis and optimiza-

tion of the multiple-output, multivariate polynomials over

GF(2m) based on [7]. The circuits with and without the
error correction schemes have been represented in terms

of these polynomials, which we have synthesized with this

technique. The polynomials are represented as the Shared

Galois Polynomial Decision Diagrams (SGPDDs) [8]. For

example, Fig. 1(a) shows the SGPDD representation of

the polynomial f (a,b,c) = a+ βbc3+ βa2c3 over GF(4),
where {α,β} ∈ GF(4).

If the initial specification is not over finite fields, e.g.

over Boolean or MIN-MAX post algebra, then the tech-

nique of [7] is applied for computing the coefficients of the

polynomials and storing them as the SGPDDs.

Once the SGPDDs are obtained, the circuits are synthe-

sized by decomposing and factoring the SGPDDs based on

finding cuts within the SGPDDs. A cut is a partitioning of

the nodes in the SGPDD into two sets T and B, where T

contains internal nodes and the root and B contains exter-

nal, internal, and the last nodes, i.e. internal nodes which

have the external nodes as their children. Effectively a cut

can factorize an SGPDD realizing a function f over GF(2m)
as f = D ·Q+R, i.e. it can perform both multiplicative and
additive decompositions, depending on how the edges are

reconnected about the nodes which are the subjects of the

cuts. Cut based algorithms have been used for synthesis

in the Boolean domain, e.g. [9]. In this paper we quickly

factorize a polynomial over GF(2m) based on cuts on their
SGPDDs to construct an expression DAG based multiple

output shared netlist. The netlist constitutes two types of

nodes: internal nodes which can either be GF(2m) adders or
multipliers, or external nodes which can only be constants

and variables over GF(2m). The internal nodes can have



0 1

2

1

1

3

3

0

0,1,2

0,2,3

0 1

2

1

1

3

3

0

0,1,2

0,2,3

0 1

0,2,3

1

0 1

0,1,2

0 1

3

0,2,3 1

3

1 0 2

(a) (b) (c)

a
a

a

a
b

b

b

c
c

c
α

α

α

α

α

β

β

β

β

β

a+βbc3+βa2c3

a

βbc3 +βa2c3

b+a2

βc3

a2

b

Figure 1. Decomposition—an example.

two children. The netlists are further synthesized based on

additional factorization and optimization. Fig. 1 shows an

example. The cuts are shown with horizontal broken lines.

Fig. 1(a) performs an additive decomposition, Fig. 1(b) per-

forms a multiplicative decomposition, and finally, Fig. 1(c)

performs another additive decomposition to obtain the final

result ((a)+ ((βc3)× ((a2)+ (b)))), which is added to the
netlist. This requires one multiplier and two adders over

GF(2m).

Once the netlists are obtained, they are structurally fac-

torized as shown in [7]. For example, given the netlist for

Z = ((AX +Y ) +BX), first node X in the netlist is deter-
mined as factorizeable, and then it is factorized by restruc-

turing the netlist as Z= ((AX+BX)+Y ) = (X(A+B)+Y ).
The netlists are also optimized by an efficient optimal algo-

rithm based on the properties of finite fields as shown in [8].

Definition 1 The parity check matrix H of a code consists

of all the non-zero r-tuples as its columns. In the systematic

form, the columns ofH are arranged asH= [HsHp], where
Hs is the systematic part and Hp the parity part.

2.2 Fault Model

The type of faults that we consider are the permanent

stuck-at-1 and stuck-at-0 faults. Furthermore, the proposed

technique assumes faults due to transients as well as in-

duced faults. A fault in a network is said to be masked if

the occurrence of the fault does not alter the function. In

this paper we shall focus on developing a design technique

for detecting single/multiple error. It is important to note

that when used in error correction mode it is able to detect

and correct faults in the parity prediction logic as well.

3 Description of Error Detection and Correc-

tion

In this section, we present different error detection

schemes. The analysis is carried out in the following three

cases: First, we analyze a case where only error detection

is considered. Second, single error correction at the out-

put bits is explored. Finally, multiple error correction using

multiple codes is investigated.

We start with a simple parity prediction scheme. Then

we extend the scheme with multiple parity bits which in-

creases the over all error detection capability. The basic

structure of the concurrent error detection and correction

scheme is shown in Fig. 2. The classical S-Box structure

is synthesized from the specification which is described in

Section 2. Next, we present a general algorithm for design-

ing the proposed scheme with an example parity check ma-

trix.

Let
→
c
1
= [c10,c

1
1,c
1
2, . . . ,c

1
m−1]

T be the output of the func-

tional block and
→
c = [c0,c1,c2, . . . ,cm−1]

T the corrected

output. Also let r be the number of parity bits, and
→
p =

[p0, p1, . . . , pr−1]
T and

→
p
1
= [p10, p

1
1, . . . , p

1
r−1]

T respectively

be the predicted and the parity bits generated from the out-

put bits. Let H be the parity check matrix associated with

the proposed single error detection and correction scheme.

Design Procedure:

• Determine the number of parity bits (r) required.

• Construct the H matrix, with (m+ r) non-zero r-bit
column vectors. The dimension of the resulting matrix

is r× (m+ r).

• A column vector with a single 1 is assigned to parity Pi.



Figure 2. Function Circuit with Concurrent Er-

ror Detection and Correction

• The column vector with all 1s is assigned to output
bit cm−1.

• The remaining m columns are assigned the output bits
ci, without any constraints.

• Generate predicted parity expressions in terms of cis.
Next, generate the predicted output parities from the

inputs.

• For Hsiao code, choose the parity check matrix such
that the output bits are assigned to the columns with

odd number of ones. In this case additional parity bits

maybe required.

• Finally, combine the multiplier, PP, output encoder, de-
coder, and the correction logic as shown in Fig. 2.

The following illustrates the various error correcting

codes considered.

Single Bit Parity Prediction (SBPP) Single bit

Parity codes are conceptually the simplest codes

for concurrent error detection. For the functional

outputs [c0,c1,c2, . . . ,cm−1], the single check bit is
Pp = [c0 ⊕ c1 ⊕ c2⊕ . . . ,⊕cm−1].

Example 1 Consider for example the single bit parity pre-

diction in the S-Box design. Here we have m= 8. We have
the following H matrix

H=
pp c0 c1 c2 c3 c4 c5 c6 c7
1 1 1 1 1 1 1 1 1

.

Therefore, the parity check equation is: Pp = c0+ c1+
c2+ c3+ c4+ c5+ c6+ c7.

Split Parity Code A split-parity code is defined in [16].

In its simplest form it is a non-linear systematic code em-

ploying NAND/NOR gates. It has two check bits P1 and P2
where the EXOR-sum of these check bits equals the parity

of the information bits of the code. The two check bits P1
and P2 are computed from the m functional information bits

[c0,c1,c2, . . . ,cm−1], as P1 = c1∨ c2⊕ c3∨ c4⊕ , . . . , ⊕
cm−2∨ cm−1, and P2 = c1∧ c2 ⊕ c3∧ c4⊕, . . . , ⊕
cm−2∧ cm−1. The linear parity function P(m) is split into
the two non-linear functions, P1 and P2. P(m) is computed
by P1⊕P2.

Hamming Code Hamming codes are the simplest of a

group of codes known as the linear block codes [4]. The ad-

vantage of the Hamming codes is that the number of parity

bits grows logarithmically with the number of output bits.

In the proposed approach, we consider parity prediction

based encoders. For memory based Hamming encoders, the

bits are encoded with a tree of EXOR operations. The sizes

of the parity prediction circuits depend on the number of

input bits.

Example 2 Consider the multiplier structure over GF(13).
Here we have m = 4. Therefore, we need 3 parity bits to
correct single errors or detect two errors. We have,

H =

p0 p
1
p2 c0 c1 c2 c3

1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1

.

Therefore, the parity check equations are: p0= c0+c1+
c3; p1 = c0+ c2+ c3; p2 = c1+ c2+ c3.

Low Density Parity Check (LDPC) codes LDPC codes

have received much attention because of their excellent per-

formance and large degree of parallelism [17]. The advan-

tage of the LDPC code is that it has reduced decoding com-

plexity. In Hamming code based correction schemes the

complexity of the encoding and decoding logic grows lin-

early with the number of data bits. The principal difference

between the LDPC code applied to other applications and

our approach is that, in our approach instead of encoders

we have parity prediction circuits.

A single error correction (SEC)/double error detection

(DED) code has a minimum Hamming distance of 4. It can

be used in single error correction and double error detec-

tion mode or in multiple error detection mode (three errors).

One such code is the Hsiao code [11]. It uses multiple par-

ity bits to uniquely identify which bit(s) in a code word is

erroneous and defines the error-free condition. Since the

speed of error detection and correction in a code is depen-

dent upon the associated check bits, the Hsiao code has high

error correction overhead.



Example 3 Consider the multiplier structure over GF(13)
constructed in Example 2. The parity check matrix H that

satisfies the three error detection condition is

H=

p0 p
1
p2 p3 c0 c1 c2 c3

1 0 0 0 1 0 1 1

0 1 0 0 1 1 0 1

0 0 1 0 1 1 1 0

0 0 0 1 0 1 1 1

.

Therefore, the parity check equations are p0 = c0+ c2+
c3; p1 = c0+ c1+ c3; p2 = c0+ c1+ c2; p3 = c1+ c2+ c3.
The final predicted parity bits for this case are calculated

based on the above equation.

Error Detection and Correction When there is mis-

match between the output parity bits and predicted output

parity bits, we can conclude that an error has occurred.

When it is used in error correctionmode using the computed

syndrome, we can distinguish errors in the functional block

and the PP block. Comparing the output parities and the PP

bits gives a unique syndrome that shows error in the func-

tional block or the PP block. This syndrome is decoded to

identify which bit is in error and the final EXOR operation is

used to correct the erroneous bit. The basic structure of the

concurrent error detection and correction scheme is shown

in Fig. 2. The output parity computation is merely deriving

the basic parity check equation from the parity check ma-

trix. The same equation is used for generating the predicted

parity bits.

Area Overhead In the proposed PP we need to gener-

ate the output parity bits from the input operands. Apart

from this, we have the decoding and correction circuitry.

Hence, the total hardware overhead is greater than that of

the functional block hardware. The delay overhead is con-

tributed by the EXOR gates in the output parity generator

plus one EXOR gate delay for the correction, together with

the decoder delay. As we can see, in the above structural

approach we did not optimize the overall hardware require-

ment. Instead, we employ a synthesis tool, specifically tar-

geted for the functional blocks, to optimized the hardware.

We synthesized the S-Box/GF(p) logic and PP logic sepa-
rately. The synthesis and optimization technique is briefly

presented in the preliminaries.

Comparing Delay Overhead The delay of the disjoint

parity prediction circuit is less than that of the main func-

tional block in the case of S-Box. Apart from the delay in

the PP block, additional EXOR gates are required to im-

plement the parity check equations, which depend on Ham-

ming weight of the rows of H. The delay overhead is con-

tributed by the output parity generator, syndrome decoding,

plus one EXOR gate delay for the correction. Table 2 shows

the delay comparison of the various cases. As we can see,

the delay penalty is minimum in the LDPC based designs,

which is mainly due to sparse matrix structure of the LDPC

codes. Moreover, only a single AND gate is required for

syndrome decoding.

4 Experimental Results

Various functional blocks (S-Box and GF(p) arithmetic
circuits) with error detection and correction techniques such

as SPBB, Split Parity, Hamming, LDPC and Hsiao codes

have been designed. The analysis presented here are for

the S-Box and the different finite fields over GF(p), where
11≤ p≤ 97. However, the technique can be easily extended
to higher order fields. The designs were synthesized us-

ing [8] and technology mapped with the Synopsys tools us-

ing the 0.09 micron CMOS TSMC technology library. Syn-

opsys’s PrimePowerTM tool was used to estimate the power

consumption.

All the codes presented in this paper have been imple-

mented in Gnu C++ 3.2.2-5 on a computer with 2GB RAM

and a 2.4GHz Athlon processor running RedHat Linux with

kernel-2.4.20-43.9. The functional circuit and parity pre-

diction circuits were stored as two-level AND-OR PLAs to

enable us to determine how effective the coding technique

is in optimizing area, power, and delay.

Table 1. Broad Comparison of Various Error
Detection Schemes

Scheme S-Box PP block % area

(area,delay,power) (area,delay,power) Over-

(µm2, ns, mw) (µm2 , ns, mw) head

Simple parity (5699.6, 2.75, 5.847) (929.0, 1.13, 3.96) 14.02%

Split Parity (5699.6, 2.75, 5.847) (1806.3, 1.64,3.47) 24.06%

Hamming Code (5699.6, 2.75, 5.847) (3057.9, 2.21, 3.29) 34.91%

LDPC (5699.6, 2.75, 5.847) (3838.5, 2.26, 4.01) 40.24%

Hsiao (5699.6, 2.75, 5.847) (3941.7, 2.27, 4.2) 40.88%

Table 2. Delay Comparison of Various Error
Detection Schemes

Scheme parity # of Delay Delay

bits Errors (detection) (correction)

Simple parity 1 all odd 3txor NA

Split Parity 2 all odd 3txor + tand NA

50% even

Hamming Code 4 2 3txor 5txor +2tand+ tinv
LDPC 5 2 4txor 5txor +2tand
Hsiao 5 3 4txor 5txor +2tand

We have minimized multipliers and adders over GF(p)
(11≤ p ≤ 97) for all the prime fields. Further, the AES S-
Box is also designed using above technique. In Table 3,the

column with the heading “GF(p) adder” shows the result of



Table 3. GF(p) adder vs Parity Prediction .

Prim GF(p) Adder Single Bit Parity Prediction

GF(p) (area,delay,power) (area,delay,power)

(µm2, ns, mw) (µm2, ns, mw)

GF(11) (1677.30, 1.51, 1.96) (638.6, 1.06, 0.68)

GF(13) ( 2809.5, 1.81, 3.32) (793.49, 1.14, 0.92)

GF(17) (5977.03, 3.19, 6.05) (1206.37, 1.54, 1.92)

GF(19) (4461.01, 2.47, 4.66) (1586.98, 1.77, 1.62)

GF(23) (5254.51, 2.45, 5.94) (1683.76, 1.96, 2.01)

GF(29) (6180.25, 2.91, 8.19) (2680.46, 2.41, 3.04)

GF(31) (3406.24, 2.19, 4.49) (2683.69, 3.00, 1.99)

GF(37) (24711.371, 5.50, 25.52) (4690.01, 2.79, 4.87)

GF(41) (25217.80, 4.29, 15.16) (4980.31, 3.04, 4.82)

GF(43) (19989.08, 5.25, 26.93) (5412.55, 3.09, 5.22)

GF(47) (23756.59, 3.21, 10.34) (5460.93, 2.88, 5.10)

GF(59) (15279.71, 3.41, 19.55) (9141.34, 3.77, 8.94)

GF(61) (14224.94, 4.07, 18.57) (9221.97, 3.88, 9.64)

GF(67) (52622.36, 10.76, 64.88) (11118.61, 4.77, 11.28)

GF(71) (4572.07, 6.12, 35.61) (14050.70, 4.93, 13.63)

GF(73) (63457.37, 11.72, 79.20) (14647.43, 4.74,13.96)

GF(79) (21437.40, 3.96, 21.40) (16850.52, 5.24, 14.58)

GF(83) (51174.26, 6.82, 56.18) (19021.34, 5.87, 18.0)

GF(89) (59922.14, 11.90, 61.96) (21930.81, 5.40, 19.7)

GF(97) (57612.64, 6.99, 61.81) (21605.03, 5.89,20.07)

synthesis of the GF adders first, and then applying the Syn-

opsys compiler on the resulting VHDL files. Here, area,

delay, and power are in 10−6mm2, nano seconds, and mW

respectively. Power was estimated at 1.8V. The second com-

ponent in the Table 3 shows the area, delay, and power of

the single bit parity prediction component. It can be noted

that the area of single bit parity prediction logic is about

16% on an average. The tables for the other higher order

parity bits are not shown here for brevity.

However, Fig. 3–5 show the comparison between the

multipliers and PP logic for the various cases considered.

Mostly, the area of the PP logic is less than that of the mul-

tipliers. On an average, for the designs considered here are

based on the proposed technique, the total area overhead

varies depending on the type of code. Also it depends on

the Hamming weight of the parity check matrix used. Due

to this reason the critical path delay also varies, although in

most of the cases the critical path delay is less than that of

the multiplier. The delay penalty also depends on the parity

check matrix, because the number of EXOR stages depends

on the number of ones in parity check equation. The power

overhead trend is also similar to that of the area. When

it is used in error correction mode, compared to the tradi-

tional techniques such as the Triple Modular Redundancy

(TMR), which is associated with an overhead of more than

200%, the error correction code based technique is much

better. Fig. 6 shows the overhead analysis for the adders

over GF(p). In general, the trend is similar. However,
the growth is not linear due to the sharing of the common

subexpressions in the parity prediction logic.

Table 4. GF(p)Multiplier vs. Parity Prediction.

Prim GF(p)Multiplier Single Bit Parity Prediction

GF(p) (area,delay,power) (area,delay,power)

(µm2, ns, mw) (µm2, ns, mw)

GF(11) (1609.57, 1.36, 1.89) (603.18, 0.99, 0.536)

GF(13) (1919.22, 1.40, 2.04) (616.09, 1.14, 0.665)

GF(17) (3419.12, 2.27, 3.68) (1254.75, 1.47, 1.41 )

GF(19) (4602.91, 2.73, 4.28) (1545.06, 1.89, 1.70 )

GF(23) (5947.99, 2.84, 5.57) (2177.27, 1.83, 2.13 )

GF(29) (6180.25, 2.91, 8.19) (3219.14, 2.86, 3.19 )

GF(31) (9583.25, 3.80, 8.86) (1490.22, 2.13, 1.90 )

GF(37) (16276.35, 4.77, 14.20) (4602.92, 2.69, 3.51 )

GF(41) (19756.76, 4.98, 14.59) (4951.28, 2.98, 3.60 )

GF(43) (21843.73, 5.22, 15.62) (6167.34, 3.45, 5.35 )

GF(47) (24253.26, 6.03, 17.42) (6225.40, 3.46, 4.40 )

GF(59) (37565.26, 6.18, 28.97) (9302.63, 4.15, 8.30 )

GF(61) (40832.80, 6.22, 31.04) (9941.29, 4.28, 9.12 )

GF(67) (40703.76, 6.05, 31.73) (12476.60,4.21, 10.95)

GF(71) (56231.86, 9.40, 33.82) (14111.97,4.51, 11.04)

GF(73) (63540.93, 10.54, 47.55) (13741.02,5.24, 11.01)

GF(79) (81549.51, 10.54, 68.44) (16647.31,5.10, 11.85)

GF(83) (90335.94, 11.18, 59.03) (18553.61,4.98, 13.52)

GF(89) (106212.2, 10.98, 68.85) (19156.77,4.90, 13.85)

GF(97) (117379.2, 13.02, 68.88) (23679.10,5.88, 18.36)

4.1 Multiple Error Correction

The technique presented so far can only detect and cor-

rect single bit errors in the output bit due to single internal

fault or detect multiple errors. However, an internal fault

may cause multiple bit errors at the output. One of the pos-

sible solutions is to separate the output bits in such a way

that they are corrected by different Hamming codes, i.e. we

use multiple Hamming codes to correct multiple errors. In

other words, one could use a combination of error correct-

ing codes to correct multiple errors. Our analysis shows that

the complexity of parity prediction logic becomes slightly

more complex when multiple codes are used. However, the

delay complexity can be reduced by splitting the whole code

into smaller words.

4.2 Error Correction in Random Logic

Error correction in random logic is also important when

it comes to fault tolerant designs. Therefore, the above tech-

niques are also applied to random logic. Table 5 shows the

synthesis results for the various benchmark circuits. The

analysis shows that the overhead varies depending on the

logic functionality. It is also found out that the critical path

in the parity prediction logic is less than that of the func-

tional circuits. Therefore, the delay overhead is due to out-

put parity generation and error correction logic. The table

shows the synthesized area of the original and the single

error correction using Hamming codes in µm2.
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5 Conclusions

The paper has aimed at comparing the performance of

different error detection and correction techniques, which

are used to mitigate malicious attacks in crypto hardware.

We presented an overhead analysis for designing S-Box and

GF(p) arithmetic blocks. We used a heuristic gate as well
as word-level synthesis and optimization technique for the

analysis. Moreover, with regards to several performance

index parameters, such as area, delay, and power a large set

of experimental circuits has been designed. In conclusion,

what clearly comes out from the experiments is, as evident,

there is a linear increase in overhead as the number of error

detection features increases. The performance figures also

closely match those of the structural technique.
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Figure 5. Power Analysis: GF(p) Multi-
plier,SBPP, LDPC and Hamming

Table 5. Area Analysis for Error Correction in
Random Logic.

Bench # of # of Functional SEC %

mark Inputs Outputs Logic Version Overhead

apex1 45 45 8799.39 14473.19 164.4

apex3 54 50 9138.09 15615.07 170.8

apex4 9 19 12947.53 17760.11 137.1

apex5 117 88 5202.87 10773.45 207.0

cordic 23 2 522.54 1099.91 210.4

cpa 24 109 6547.92 13092.62 199.9

e64 65 65 1474 3057.8 207.4

ex5p 128 28 2354.67 4760.95 202.1

misex1 8 7 354.80 709.6 201.0

misex2 25 18 616.08 1267.64 205.7

misex3 14 14 4899.66 10592.82 216.1

misex3c 14 14 3209.46 5225.45 162.8

seq 41 35 9502.57 12192.7 128.3

table3 14 14 6686.62 13270.02 198.4
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