
Digital Nano-CMOS VLSI Design Courses in Electrical and
Computer Engineering Through Open-Source/Free Tools

Elias Kougianos1, Saraju P. Mohanty2, and Priyadarsan Patra3

NanoSystem Design Laboratory (NSDL), University of North Texas, Denton, TX, USA.1,2

Intel Architecture Group, Intel Corporation, USA.3

E-mail: eliask@unt.edu1, saraju.mohanty@unt.edu2, priyadarsan.patra@intel.com3.

Abstract— Digital VLSI design courses are a standard com-
ponent in most electrical and computer engineering curricula.
Electronic Design Automation (EDA) or Computer Aided Design
(CAD) tools and frameworks are an integral and indispensable
part of such courses. In this paper we present our findings during
the preparation and setup of such a course, centered around
nanoscale CMOS, standard cell based design. Practical issues,
such as the choice of licensing model, hardware and software
platform selection, point tool identification and deployment as
well as the availability of readily useable standard cell libraries
are discussed. In addition, a design flow that incorporates the
tools in a comprehensive framework is presented. A sample
syllabus and a suggested teaching methodology are also given.

I. INTRODUCTION

Digital VLSI design courses are an integral and well-
established part of undergraduate electrical and computer engi-
neering curricula. They are no longer considered specialized
courses but are part of a well balanced program, on equal
footing with other, older subjects such as Digital Signal Pro-
cessing, Control Systems, Communications, Microprocessors
etc. Even though all such courses rely on specialized software,
digital VLSI design differs in that the required software is
immensely more complex, difficult to master and expensive.
Furthermore, it does not extend to other topics in the same
way other software packages (for example, MATLAB) do.

To benefit a student, a digital VLSI course must provide,
in addition to coverage of fundamental topics, early and
continuous exposure to the various Electronic Design Au-
tomation (EDA) or Computer Aided Design (CAD) tools and
frameworks that must be used to complete successfully even
a small size project. Peculiar to this subject is the related
topic of a design flow and how such a flow is achieved by
judicious combination of point tools. Very important for a
student’s education, with implications to future employment,
is the solid understanding of the entire design process and
demonstrated (via a project) familiarity with EDA tools. For
these reasons, a successful VLSI design course will include
substantial exposure to such methodologies and tools.

Integrated circuit EDA tools are prohibitively expensive.
A complete seat of tools (acquired through one license for
front and back end IC design costs hundreds of thousands
of dollars. The major EDA vendors have understood the
need for undergraduate student exposure to such tools and

0This is supported in part by NSF grants CCLI-0942629 and CNS-0854182.

provide reasonable, at first glance, packages at “nominal”
cost. The intentions of these offers are noble but the actual
implementation of these special academic programs leaves a
lot to be desired. The “nominal” cost is of the order of $5K
- $10K per year, but they do not come with any customer
support. In addition, the computing and licensing servers
(or platforms) in which they are parked are expensive. The
skilled man power as a CAD support engineer (with system
adminstration skills) needed to maintain such facility is quite
expensive. For smaller schools even this cost is prohibitive
and creates a serious discrepancy between the education of
students from schools that can afford the software and those
that cannot. In the opinion of the authors, a one-time perpetual
license fee would be more reasonable. Worse still, usage of
these tools is governed by very complicated legal agreements,
which must be approved by each institution’s legal department.
This process can literally take months. Other problems with
commercial EDA is the inability of students to run the software
on their machines, the very selective distribution policies, lack
of support, annual renewal hassles etc. Paradoxically, smaller
EDA companies are even worse in their attitude towards
educational institutions: either they outright demand full price
for educational use of their products or their “academic” prices
are ridiculously high compared to the large companies. The
authors understand that EDA companies are private business
entities with profits as their objective but catering effectively to
students (who will be their future customers) is good business.
The universally strong dislike of EDA companies in the IC
design world, stems partially from this lack of endearing
students, and their educators, in our opinion.

To resolve these problems in our courses and provide the
ability to our students to experiment on their own, on their
personal computers, while providing them with a meaningful
educational experience, we investigated, with the help of
an NSF grant, the possibility of using open source and/or
free EDA tools in our courses. Open source is preferred,
whenever available, to free. Free software commonly lucks the
availability of source code and this presents dangers regarding
the long-term viability of these projects. This paper presents
our preliminary findings during the planning stage.

The rest of the paper is organized as follows: in Section II,
we discuss hardware and software choices and give recom-
mendations for setting up a VLSI laboratory. In Section III,
we present a sample generic syllabus for a VLSI course.
We examine open source/free tools and internet resources in



Section IV and show how design flows can be implemented
using these resources in Section V. Our proposed teaching
methodology is given in Section VI while conclusions and
extensions are discussed in Section VII.

II. HARDWARE / SOFTWARE PLATFORM ALTERNATIVES

The selection of appropriate hardware and software plat-
forms is, to a large extent, dictated by the choice of EDA
and CAD tolls that will be used throughout the course. In
the past these tools were primarily commercial (which are
very expensive) and only available for a limited number of
proprietary Unix workstations. Fortunately, with the advent
of inexpensive x86-based personal computers and the open
source movement, the situation has altered drastically and true,
complex IC design can be performed on low-priced hardware
with the software being mostly free.

On the hardware side, the selection of platform is simple:
x86-based personal computers are used. Their ubiquitous
presence, ready availability and low-price make them the
obvious choice. The only question that needs to be addressed
is whether the computational model will be client-server
or client-only. Both approaches have their merits but, after
consultation with departmental IT (Information Technology)
support (i.e. Computer Technical Support), it was decided that
the client-server model is most suitable in a class project
environment. The main advantage is that only one machine
(the server) needs to be custom configured in terms of operat-
ing system and software installations. In addition, centralized
accounting management is possible on the server via a network
login service. The Lightweight Directory Access Protocol
(LDAP) was chosen because of its simplicity and the availabil-
ity of a robust open source implementation (OpenLDAP, [1]).
All student accounting information as well as their working
storage is kept on the main server. This places, of course,
the burden of maintaining backups on the server side. A very
efficient approach to solving this issue is through the use of
RAID arrays which address the problem of one or more hard
disk failures while maintaining the integrity of data. In the
lab dedicated to the course, RAID 1 (i.e. Redundant Array
of Inexpensive Disks 1 or mirroring) was chosen as it offers
very effective real-time backup with hardware failure tolerance
and zero downtime. Other choices are RAID 5 and 6 (i.e.
disk spanning with parity redundance) when the number of
available hard disks is limited. RAID 6 should be preferred
because it offers protection in the event of simultaneous failure
of two disks, as opposed to RAID 5 which would experience
complete data loss in such an event.

The selection of the client-server model has one downside:
the hardware requirements on the server are substantial and
depend on the number of students that are enrolled in the
class. In our initial deployment, 35 students are enrolled which
means that the server should be able to accommodate all these
students simultaneously. The server used in this project is a
four-CPU (Intel i7) computer with four cores each, 16 GB of
RAM and 4 TB of RAID 1 storage. If a substantial server
configuration is outside the financial resources of the depart-
ment offering such a course, a workstation-only model can

be used as described below. Also, the heavy communications
between the clients and the server dictate that there should be
several (ideally four or more) network ports on the server and
the network connecting the clients to the server should be of
gigabit speed.

The clients are x86-based personal computers configured as
workstations. Since the performance requirements are much
less severe than the server, a less powerful CPU configuration
(even older Pentium IV class machines are acceptable) is
required. 2-4 GB or RAM and approximately 250-500 GB of
hard disk storage are sufficient. In addition, a gigabit ethernet
connection should be available.

On the software side, several factors affect the choice of
operating system including the following:

• Whether the environment will be client-server or work-
station only.

• Whether there is a dedicated lab available or general
access labs are used.

• Whether the software running on the server and the
workstations will be 32 bit or 64 bit.

A. Client-Server Model

The client-server approach is preferred and is followed in
this project due to the advantages inherent in this model. Since
the vast majority of open source/free EDA/CAD tools have
their roots in older, Unix-based projects, the operating system
(OS) on the server side should be a variant of Unix. Due
to the popularity of Linux, it was chosen as the server OS.
A problem with Linux is the bewildering array of available
distributions. Since enterprise class performance and stability
are needed, the field of available choices is more narrow but
some solutions are commercial and require annual mainte-
nance contracts. The Community Enterprise Operating System
(CentOS, [2]) version 5.5 was chosen due to its robustness,
extremely wide support, frequent updating, and open source,
no-cost availability. The 64-bit variant is used to take full
advantage of the large amount of available RAM (16 GB).

The client side OS choice is more critical. There are two
realistic alternatives: Microsoft Windows or Linux. Each alter-
native has its own advantages, disadvantages and challenges.

If a General Access Lab (GAL), shared among departments
and colleges, is used by the students to complete the course
project, then it is unlikely that Linux or dual-boot workstations
are available and most probably the workstations are running
a 32 or 64 bit variant of Microsoft Windows. In this case,
the role of the workstation is reduced to that of a “dumb
terminal” used to communicate with the server. All software,
and the students’ working storage resides on the server. A free
X server, such as Xming [3] or free virtual network software,
such as TightVNC [4] are used for this purpose. This scenario
is viable but places resource strain on the server and the
network. In addition, students can use their own laptops to
connect to the server. This setup is shown in Fig. 1.

B. Workstation-Only Model

If a GAL is not available or if a lab is dedicated to the course
projects but the cost and maintenance associated with a server



Server
Multi-CPU
64-bit OS

Large RAM
Large storage

Lightweight
Windows

Workstation

Heavy
Network
Traffic

Lightweight
Windows

Workstation

Heavy
Network
Traffic

Student
Laptop

Heavy
Network
Traffic

Fig. 1. Client-Server model of lab setup.

cannot be justified, a workstation-only approach can be used.
With the central server removed, each individual workstation
must be responsible for user authentication, local working
storage and tool execution. Since the tools will be running
locally, a 32 or 64 bit (depending on available memory) version
of Linux is installed as the OS. The workstation can be running
CentOS or an EDA-specific version of Linux, the Fedora
Electronic Lab [5]. To facilitate maintenance, a student is
assigned a specific workstation for use throughout the course.
Students are also encouraged to install the OS and tools on
their personal laptops and use them instead of a workstation.
Most students find the OS installation and configuration of
their laptops in a dual-boot mode a valuable experience.

C. Mixed-Mode Model

The most flexible configuration arises when a powerful
server is available and the course instructors have the ability
to configure individual workstations (in a GAL or dedicated
lab or both) to fit the course project requirements. In this
usage model the server handles authentication and storage
but the execution of the tools can take place locally, on the
workstation, or remotely, on the server. The home directories
of the students are also mounted, upon login, to the local
workstation via NFS, or, if the workstation functions in “dumb
terminal” mode, they can be on the server. Similarly to the
workstation-only model, the local machines run a 32 or 64
bit version of Linux as the OS but Windows PCs with Xming
or TightVNC can also be used. Student laptops can be part
of the system after installation of the proper software. This
model reduces the hardware requirements on the server at the
expense of additional configuration and maintenance of the
workstations. This setup is shown in figure 2. Because of its
flexibility, this approach has been followed in this project.

III. A SAMPLE SYLLABUS

We provide in this section a template for a syllabus targeted
towards a standard-cell based digital VLSI design course. This
syllabus is tentative and will be dynamically adjusted as we
gain more experience with issues and requirements during

Medium- or
Heavyweight

Server

Lightweight
Windows

Workstation Mediumweight
Linux

Workstation

Heavy
Network
Traffic

Student
Laptop

(Windows)

Heavy
Network
Traffic

Student
Laptop
(Linux)

Light or no
Network
Traffic

Light or no
Network
Traffic

Fig. 2. Mixed-Mode model of lab setup.

actual delivery of the course. The course is scheduled to be
offered in the Spring 2011 to an anticipated audience of 35-40
junior and senior electrical and computer engineering students.

A. Course Title and Credit Hours

Digital Nano-CMOS VLSI Design. 4 credit hours course
that include 3 hours lecture and 3 hours laboratory.

B. Course Description

Introduction to digital VLSI standard cell-based design.
Nano-CMOS device physics and technology. Simple gates (in-
verters, NAND, NOR). Flip-flops and memories. Introduction
to layout. Simulation and characterization of gates. Standard
cell libraries. Layout of standard cells. Standard cell char-
acterization. Introduction to VHDL and synthesis. Synthesis
of larger designs. Place, route and chip assembly. Students
develop a standard cell library and complete a medium-size
chip design.

C. Prerequisites

Digital Logic, Circuit Theory, Basic Electronics, Structured
Programming.

D. Required and Optional Textbooks

Weste and Harris [6] or Rabaey, Chandrakasan and Nikolic
[7] (required). Mohanty, Ranganathan, Kougianos and Patra
[8] (optional). Sicard and Bendhia [9] (optional).

E. Course Objectives

Upon completion of the course, the student will be able to:
1) Understand nano-CMOS device principles and technol-

ogy.
2) Model the nano-CMOS transistor for digital and analog

applications.
3) Assemble nano-CMOS transistors into basic digital

gates, such as inverters, NAND and NOR.



4) Perform the layout of simple gates for a given technol-
ogy.

5) Simulate and characterize simple gates using an analog
simulator.

6) Understand the concepts and methodologies involved in
standard-cell design.

7) Design and characterize a library of standard cells.
8) Use a hardware description language, such as VHDL, to

synthesize larger designs from standard cells.
9) Place, route and assemble into a chip a synthesized

design.

F. Student Learning Outcomes
The students will:
1) Demonstrate proficiency in designing and analyzing

digital CMOS circuits.
2) Incorporate digital gates into standard cells.
3) Demonstrate proficiency in layout of standard cells.
4) Demonstrate an adequate level in writing and synthesiz-

ing VHDL code.
5) Design a medium-size digital chip.
6) Perform functional verification of a medium-size digital

chip.

IV. THE INDIVIDUAL CAD TOOLS AND WEB RESOURCES

The selection of the various open source and/or free point
tools is dictated by the individual tasks that the students should
be able to perform as part of the overall design flow as outlined
in the following subsections.

A. Schematic Entry and Netlisting
The starting point in our design flow is a transistor level

description of various cells, followed by analog simulation
for functionality verification and characterization. An effective
and programmable schematic entry tools is XCircuit [10].
It allows schematic entry and automatic hierarchical SPICE
netlist generation. Additionally, the schematics can be exported
in publication-quality postscript code which is useful when
the students compose their project report. XCircuit is actively
being developed with frequent releases and is part of most
Linux distributions. Precompiled packages are also available
but compilation from source code is straightforward.

B. Analog Simulation

SPICE is the standard analog simulator used in this course
for gate and cell characterization. From the numerous variants
available, ngspice [11] was chosen due to its active devel-
opment, improved stability and support of the BSIM 4.6.5
model which is absolutely necessary for effective nano-CMOS
transistor level simulation (including gate leakage). Equally
important is the availability of SPICE models that reflect
current nano-CMOS technology and process capabilities. In
our course we use the Predictive Technology Model (PTM,
[12], [13], [14], [15], [16]) which can be tailored to various
technology nodes and processes (including carbon nanotubes).
Postprocessing of the SPICE simulation results is done through
the graphical waveform viewer GTKWave [17].

C. Layout

There are four major open source projects addressing the
needs of IC layout: the venerable Magic [18], Toped [19],
LayoutEditor [20] and graal, which is part of the Alliance
VLSI toolset [21]. The choice is left on the individual instruc-
tor as long as the tool can export GDSII streams. In our course
we use Magic and graal since they support LVS (Layout vs.
Schematic) and DRC (Design Rule Checking).

D. Back-End

The tools described above will allow the student to design,
simulate and layout a number of standard cells and thus create
a standard cell library. To create a working chip from a library
requires a set of tools that will take synthesizable VHDL and
synthesize modules of a larger chip using the library. Place,
route and chip assembly then follows to create a working
chip. The back-end is the weakest link in open source EDA.
Essentially there are two solutions but only in the form of
integrated frameworks. They are the Alliance VLSI system
[21] and the Electric VLSI system [22]. Electric is fully
integrated which means that establishing a flow with individual
tools is difficult or impossible. Parenthetically, in the integrated
framework category we should mention Microwind [23] which
is supported by two excellent textbooks [9], [24] but does not
cover the back-end, is not open source and is Windows only.

On the other hand, the Alliance VLSI system consists of a
large number (over 30) individual tools that cover complete
front-to-back standard cell VLSI design. Specifically, these
tools are capable of:

• Hierarchical layout with DRC and LVS.
• Graphical Finite State Machine (FSM) entry, minimiza-

tion and synthesis.
• VHDL simulation (including customized C modules)

with waveform viewer.
• VHDL to Register Transfer Level (RTL) synthesis and

optimization.
• Standard cell placement and routing.
• Routing for pads.

These tools are tightly integrated into a complete back-end
flow which is fully documented but also allows the instructor
to customize it. Having the ability to manually execute and
explore the various steps in this flow is of high educational
value, as well. In addition, the Alliance VLSI system is part
of many Linux distributions and comes in precompiled binary
packages, as well as complete source code. Most importantly,
Alliance provides a set of λ-based CMOS libraries including
standard cells, memories and pads. Alliance has been field-
proven with industrial designs such as a 400K transistor gigabit
router [25] and an 875K superscalar microprocessor [26].
Additional scalable libraries are also available by other re-
searchers [27]. The license is very liberal (GNU General Pub-
lic License, GPL) and it allows even for fee-free commercial
designs, an aspect which may be attractive to entrepreneurial
students (or instructors!).

In our course we use the Alliance VLSI system for the back-
end due to its completeness, easy manipulation of design flow
and the availability of scalable standard cell libraries.



V. DESIGN AND SIMULATION FLOW

The proposed design and simulation flow for the course
projects is logically divided into two portions: front-end and
back-end. In the following discussion, front-end means the
completion of a standard cell, from specification to schematic
to simulation and final layout. Therefore, in our flow, standard
cell layout is part of the front-end. Back-end means the
conversion of synthesizable VHDL to RTL and the place and
route of the pre-characterized standard cells to implement the
RTL. The design is completed with the addition of pad cells.

A. Front-End Flow

The front-end of the flow is presented in Fig. 3.

Standard Cell
Logical Design

Schematic Entry Schematic

Simulation Waveforms

Specifications
Met?

N

Layout

DRC/LVS
Clean?

Y

N

Standard Cell
Physical Design

Complete

Y

GDSII File

Fig. 3. Front-end of the design flow.

The entire flow starts with the logical (transistor-level)
design of a standard cell. The cell can be very simple, with
a small number of transistors, such as an inverter, or fairly
complex, such as a 16-bit multiplier with transistor count in
the hundreds. In all cases, the transistor count of the cell
is not excessive and therefore analog simulation is feasible
within very reasonable times. The schematic of the cell is
entered through XCircuit [10] which also generates the netlist.
Subsequently, the netlist is hand-edited to include the required
SPICE analyses and any additional modifications needed. This
step is of extreme educational value, giving the students an
opportunity to see and edit the actual netlist (as opposed to
working with a graphical editor that hides all the details)
and provides them with a solid understanding of how SPICE
works and what it expects as input. ngspice [11] is then
invoked on the command line (another educational bonus)
and any errors must be corrected by editing the netlist itself,
unless the error is due to the logical design. The results of

the simulation are then viewed with GTKWave [17] and if
the design passes the functional verification tests and meets
specifications, physical design (layout) follows with Magic
[18] or graal [21]. At the end of this process the students
have a functional, characterized library of standard cells and
the back-end flow follows.

B. Back-End Flow

The back-end of the flow is presented in Fig. 4.

Synthesizable
VHDL Design

Simulation

Specifications
Met?

N

RTL Synthesis

Y

Chip
Physical Design

Complete

GDSII File

Standard Cell
Library

Place and Route

Pad Ring Addition

Fig. 4. Back-end of the design flow.

The entire back end is done using Alliance tools. First, a
synthesizable VHDL description of the chip is derived. This
step is typically broken into several substeps as the chip is
gradually built from previously derived VHDL subsystems.
For functional simulation any VHDL simulation tool can be
used but we prefer to use ASIMUT which is the simulator
provided in Alliance. The VHDL subset supported by Alliance
is restrictive so if a design simulates correctly with ASIMUT,
then the probability of its successful synthesis (within the Al-
liance framework) is high. Once the design has been verified,
RTL synthesis follows. This step uses the previously generated
standard cell library (derived in the front-end part of the flow)
or it can use another library provided with Alliance or another
researcher ([27], for example). RTL synthesis is followed by
place and route of the standard cells and the chip is completed
with the place and route of a pad ring. The final three steps
(RTL synthesis, standard cell place and route, and pad ring
place and route) are, as expected, of significant complexity and
involve a large number of tools and intermediate formats. This
process is extremely well documented in the Alliance help sys-
tem [21] and allows a significant level of customization from
the instructor or the students. The Alliance suggested flow
also provides for intermediate step verification and validation
so the confidence level for a working final design is high.

VI. SUGGESTED TEACHING METHODOLOGY

The conceptual framework of the course is straightforward:
starting from first principles of operation of CMOS transistors,



students progress to gates, to layout, and then generate a
standard cell library; using VHDL, they design a chip and
implement it physically using the generated library.

Even though the description is simple, the scope is tremen-
dous. The course can be taught in one semester in its entirety
or it can be broken into a two-semester course sequence
for deeper coverage of all topics. The deployment (one or
two semesters) is up to the individual instructor, within the
constraints of the relevant curriculum. We propose to follow
both approaches with the one-semester version being taught
in the Spring 2011 semester and report our findings in regards
to the two approaches, in a future publication.

At an early stage of the course, the instructor will have
to make a choice: whether to have the students create their
own standard cell library or use one of the provided libraries.
In a one-semester course, the latter option might be the only
one viable, but a significant portion of educational experience
will be lost in the process. In our first course offering we
will attempt to cover both library and chip creation. In a
two-semester course, library creation is a must. We have also
incorporated a lab component to the course which is, in our
opinion, indispensable. It is in the lab sessions that the students
will learn the “mechanics” of translating an abstract course
lecture into something that can be actually manufactured. It
is also important that the lab be taught not just by a teaching
assistant but that the instructor should be also present, at least
for portion of the allocated lab period.

One of the advantages of using open source tools only is
that the students can work on assignments and projects on their
own personal computers or laptops. In fact, this should be
strongly encouraged. The assignments should have a strong
practical flavor with concrete deliverables (e.g. design an 8-bit
register) that can be used to build the library and the chip.

The most important facet of this course is the project on
which the students work throughout the semester. For a one-
semester course, the concrete deliverable could be a final
physical design of a chip while for a two-semester course the
deliverables would include the library, in addition to the chip.
The specific nature of the chip is left to the instructor and/or
the students. It would be an excellent educational experience
for the students to form a 2-3 person team and research
possible chip candidates which would then be proposed for
instructor approval. Common examples are CPUs, DSP cores
(filters, FFT, DCT/IDCT), arithmetic cores (CRC generator,
ALU, FPU), communications controllers (ethernet, UART,
CAN, I2C, USB, IrDA), cryptographic hardware (AES, DES,
RSA, SHA) etc. Many such examples, complete with VHDL
code, can be found at the OpenCores web site [28].

VII. CONCLUSIONS AND EXTENSIONS

We presented in this paper a conceptual organization of a
digital, standard-cell based VLSI design flow using exclusively
open source or free tools. The flow can be adapted to be part
or the core of a one to two semester VLSI design course and
produces a working chip design (and associated standard cell
library) as concrete outcomes. The entire process is broken
into a front-end and a back-end. The front-end uses traditional

open source simulation and layout EDA tools while the back-
end is part of the well-established open source Alliance VLSI
system and allows for full customization.

Our overall objective is to demonstrate that high quality
undergraduate education in VLSI is possible with open source
or free tools and should be encouraged as part of the ethics
training that is expected of modern engineering curricula.

It is our future plan to attempt this type of open source
flow to semi-custom or even full-custom digital design and
eventually to analog and mixed-signal IC design. There are
many aspects of such flows that are missing from the open
source tool repertoire but we hope that our work will stimulate
further developments in this direction.

As a final note, the authors would like to invite commercial
EDA companies to less restrictive (and cheaper) academic
licensing which would make industrial-strength EDA training
and education really accessible to all the students.

REFERENCES

[1] The OpenLDAP project, http://www.openldap.org/.
[2] The Community Enterprise Operating System, http://www.centos.org/.
[3] Xming X server, http://www.straightrunning.com/XmingNotes/.
[4] TightVNC software, http://www.tightvnc.com/.
[5] The Fedora Electronic Lab, http://fedoraproject.org/wiki/Electronic Lab.
[6] N. H. E. Weste and D. M. Harris, CMOS VLSI Design, 4th ed. Addison-

Wesley, 2011.
[7] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated

Circuits, 2nd ed. Addison-Wesley, 2003.
[8] S. P. Mohanty, N. Ranganathan, E. Kougianos, and P. Patra, Low-Power

High-Level Synthesis for Nanoscale CMOS Circuits. Springer, 2008.
[9] E. Sicard and S. D. Bendhia, Basics of CMOS Cell Design. McGraw-

Hill, 2007.
[10] Xcircuit, http://opencircuitdesign.com/xcircuit/.
[11] Mixed - Mode Mixed - Level circuit simulator, http://ngspice.

sourceforge.net/.
[12] Predictive Technology Model, http://ptm.asu.edu/.
[13] Y. Cao, et al., “New paradigm of predictive MOSFET and interconnect

modeling for early circuit design,” in Proceedings of the IEEE Custom
Integrated Circuits Conference CICC, 2000, pp. 201–204.

[14] W. Zhao and Y. Cao, “New generation of predictive technology model
for sub-45nm early design exploration,” IEEE Transactions on Electron
Devices, vol. 53, no. 11, pp. 2816–2823, November 2006.

[15] A. Balijepalli, S. Sinha, and Y. Cao, “Compact modeling of carbon
nanotube transistor for early stage process-design exploration,” in Proc.
International Sympo. Low Power Electronics and Design, 2007, pp. 2–7.

[16] Y. Cao, et al., “The predictive technology model in the late silicon era
and beyond,” Foundations and Trends in Electronic Design Automation,
vol. 3, no. 4, pp. 305–401, 2009.

[17] GTKWave waveform viewer, http://gtkwave.sourceforge.net/.
[18] Magic VLSI layout tool, http://opencircuitdesign.com/magic/.
[19] Toped IC layout editor, http://www.toped.org.uk/.
[20] The LayoutEditor, http://www.layouteditor.net/.
[21] Alliance VLSI CAD, http://www-asim.lip6.fr/recherche/alliance/.
[22] Electric VLSI system, http://www.staticfreesoft.com/.
[23] Microwind, http://intranet-gei.insa-toulouse.fr/∼sicard/microwind/.
[24] E. Sicard and S. D. Bendhia, Advanced CMOS Cell Design. McGraw-

Hill, 2007.
[25] Z. Belkacem, R. Vincent, P. Frédéric, G. Alain, and D. Anne, “RCube:

A gigabit serial link, low-latency adaptive router,” in Proceedings of the
Hot Interconnects Symposium IV, 1994.

[26] G. Alain, L. Luis, F. Wajsbürt, and W. Laurent, “Design of a high
complexity superscalar microprocessor with the portable IDPS ASIC
library,” in Proceedings of the European Design and Test Conference
(EDAC-ETC-EUROASIC), 1994.

[27] VLSI and ASIC technology standard cell library, http://www.
vlsitechnology.org/index.html.

[28] OpenCores, http://opencores.org/projects.


