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Abstract—Performance and power consumption are very im-
portant aspects of embedded systems design. Several studies have
shown that cache memory consumes as much as 50% of the
total power in such systems. Thus, the architecture of the cache
governs both performance and power usage of the embedded
system. In this paper a new Reconfigurable Embedded Data
(RED) cache is proposed especially targeted towards embedded
systems. This paper further explores the issues and considerations
involved in designing such a reconfigurable cache. The novelty
of the RED cache architecture lies in the fact that it can be
configured as direct-mapped, two-way, or four-way set associative
using a mode selector function. Thus, one cache design can be
used for different applications. The module has been designed,
simulated and synthesized in Xilinx ISE 9.1i and ModelSim SE
6.3e using the Verilog hardware description language.
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I. I NTRODUCTION AND MOTIVATION

The need for mobile systems, portable devices, and many
other appliances used in our modern life results in a growing
demand for embedded computing systems. As this growth
occurs at tremendous rate, it reduces the window for time-to-
market, which in turn is motivating us to design new core-
based system-on-chip (SoC) architectures. In the design of
such systems, embedded processors (microprocessor cores)
are playing a vital role [1]. Several programming languages
and Electronic Design Automation (EDA) tools are currently
available for embedded processors, which make programming
straightforward and offer different solutions to overcomede-
sign challenges and simultaneously optimize design metrics.
Designers have to maintain a balance of these metrics and
compromise between power, cost, performance and time-to-
market. Cache memory, a crucial part of embedded systems,
is responsible for consuming approximately half of the total
power consumption by these systems [2]. A common approach
is the use of separate data and instruction caches as a way of
improving performance. Proper cache architecture can bring
down the time overhead of accessing data and instructions
from off-chip main memory, thereby reducing power con-
sumption. High gains in performance have been achieved by
tuning appropriate cache architectures to the applicationset of
embedded systems. Cache sizes, the degree of associativity,
block replacement algorithms, write policies, and block size
(cache line) are the core parameters for optimizing the cache
architecture. Suitable selection of these design parameters can
enhance cache performance in terms of power consumption,
hit ratio, access time and hardware requirements.

Embedded systems have always been cost sensitive. Cache
occupies approximately 50% of the total processor area and
also accounts for approximately 50% of a processor’s total
power in embedded systems, including both static and dynamic
components [3]. Thus, cache governs the performance and
cost of application specific embedded systems. The direct-
mapped (DM) cache architecture is very popular in embedded
systems because of its simplicity, faster access time and low
power consumption. A DM cache is more energy efficient and
uses less power than the same sized two-way or four-way set
associative cache since it accesses only one location of tagand
data arrays per access [4]. Moreover, a DM cache has faster
access time as it does not require a multiplexer to select the
requested data from multiple accessed data items in different
sets. Although DM cache has the advantage of consuming less
area and power, it suffers from relatively poor performance.
One way to improve the performance of such systems is to use
set associative cache at the expense of larger area and higher
power consumption compared to direct-mapped cache.

The associativity requirement of data caches for almost all
embedded systems is one way, two-way or four-way. In order
to match the cost, performance, and power goals with targeted
time-to-market, a new reconfigurable embedded data cache is
proposed. The proposed design can be configured as direct-
mapped, two-way or four-way set associative according to the
system’s requirement.

The rest of the paper is organized as follows: Section
II presents our contributions and summarizes related prior
research. III introduces the fundamental design elements used
in the RED cache and its detailed architectures. In Section IV
the prototype of the RED cache along with our design flow
and experimental results are presented. Section V concludes
the work and gives suggestions for future research.

II. CONTRIBUTION OF THIS PAPER ANDPRIOR RESEARCH

The major contributions of this paper can be categorized
under two different aspects:

1) The first aspect is the architecture of the RED-cache
which is capable of operating in three configurations:
(i) one-way associative (ii) two-way associative, and
(iii) four-way associative. A mode selector module was
designed within the data cache which allows it to operate
in any of these three configurations. The same processor
with RED-cache can be used for various applications
requiring different associativity to achieve the desired



performance. This RED-cache has been designed to tar-
get embedded systems, as most of the popular embedded
systems use direct-mapped, two-way or four-way data
cache.

2) Another aspect is the use of a Hardware Description
Language (HDL) for its implementation. To the best of
our knowledge, this is the first time that an HDL has
been used for the implementation of a reconfigurable
cache architecture. This RED-cache architecture has
been prototyped and synthesized using the Verilog HDL
in Xilinx ISE 9.1i and simulated through the ModelSim
SE 6.3e simulator. Our design has achieved the highest
operating frequency among the reviewed designs at the
expense of minimal static power overhead.

Several cache designs have been proposed by researchers
either to improve the performance of direct-mapped cache
or to reduce the access time and power consumption of set
associative cache. Classification of related prior research based
on design approach is given in Fig. 1 [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [4], [16].
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Fig. 1. Classification of related prior research in cache design.

III. T HE PROPOSEDDATA CACHE

A. Overview of the RED-Cache

A data cache memory lies between the processor and the
main memory [17]. Figure 2 shows the high level block
diagram of the RED-cache along with the signals that it
needs to communicate with the processor and main memory
interface. The processor interface consists of the addressbus
(PAddress), data bus (PData), and three control signals (PRW,
PStrobe, and PReady). The processor starts a bus transaction
when PStrobe is high and a requested address is placed on the
address bus. The cache sends a PReady signal to the processor
when the bus transaction is completed. The PRWsignal is low
for write operation and high for read operation. The main
memory interface consists of address bus (MAddress), data
bus (MData), and three control signals (MRW, MStrobe, and
MReady).

In order to access the main memory, the requested address
is first placed on the MAddress bus along with the MStrobe
and MRWcontrol signals. The MRWsignal is low for write
operation and high for read operation. MReady is used to
signal the cache memory that the bus transaction is completed
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Fig. 2. High-level view of RED-cache.

by the main memory. Two global signals, Clk and Reset are
used to synchronize the cache operation with the processor.
There is an additional signal called mode, which makes the
cache reconfigurable. Depending upon the value of the mode
signal, the proposed design of reconfigurable data cache can
work in any of three configurations: direct-mapped cache, two-
way set associative cache, and four-way set associative cache.

B. Fundamental Elements used in the Cache Design

The overall performance of a cache is determined by the
basic elements of its design, such as size, mapping function,
replacement policy, write policy, and block size. Table I
gives the design features of the proposed architecture. A
256 byte cache has been chosen for implementation due to
limitations of FPGA chips. In order to satisfy the associativity
requirement of embedded applications, our design can use
one of the following mapping functions: direct-mapped, two-
way set-associative, and four-way set-associative. Although
this design is extendable up to N-way associativity with slight
modifications in the mode selector unit, we have implemented
only up to 4-way associativity. Least Recently Used (LRU)
replacement policy has been used in order to obtain high
hit ratio. Write through policy has been chosen for write
operation. Easy implementation and consistency among main
memory and cache are two major benefits of this policy. The
block size of one word has been taken for simplicity.

TABLE I
ELEMENTS AVAILABLE FUSED BY THE RED CACHE ARCHITECTURE[18]

Elements Existing Proposed Architecture

Cache Size Few bytes to several Kbytes 256 bytes
Mapping Direct Direct Mapped
Function Fully Associative Two-way Set-associative

N-way Set Associative Four-way Set-associative
Replacement Least Recently Used (LRU) Least Recently Used (LRU)

Policy First-in-first-out (FIFO)
Least Frequently Used (LFU)

Random
Write Write through Write through
Policy Write Buffer

Write Back
Block Size Multiple Words 1 Word



C. Architecture of the RED-Cache

The top-level design module shown is further divided into
sub modules to build the main module as shown in figure 3.
The proposed reconfigurable cache consists of six sub mod-
ules: Tag RAMs, Valid RAMs, Data RAMs, Line Replacement
unit, Mode Selector Unit, Cache Controller.
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Fig. 3. Sub-modules of the proposed design.

1) Tag RAM: The tag RAM is an array of SRAM cells
used to hold the tag fields of the physical addresses which are
currently stored in the data ram. When the processor makes an
access call for any particular memory location, first it checks
to see whether the requested memory address is in the cache
memory or not by looking for that address in the tag RAM. If
its there, it gets the data from the cache, otherwise from the
main memory.

2) Valid RAM: Contains a valid bit associated with each
memory location that is currently mapped to cache. This valid
bit indicates whether the cache entry is valid or not. Initially,
all entries are set to invalid. As the data contents are moved
from main memory to cache, the valid bit corresponding to
them is set to valid.

3) Data RAM: The data RAM is also an array of SRAM
cells; they store the data contents of physical addresses which
are currently mapped to cache.

4) Tag Comparators: When a data access request is initi-
ated by the processor, then all tag comparators simultaneously
compare the content of the tag array indicated by the index
field with the requested address’s tag field. If any of the
tag arrays hold the requested address, the corresponding tag
comparator generates the active high match signal.

5) Line Replacement Unit: When a cache miss occurs, the
line replacement unit determines which line should be removed
from the cache. According to the mode selection signals, this
unit will replace the least recently used (LRU) line from the
requested address in case of cache misses. The LRU unit has
been implemented using the counter method, which provides
good performance for low associativity (two or four) [19]. An

n-bit register is associated with each cache line in a set, which
is used to store the LRU record. The register value shows the
order in which the cache lines have been accessed. A register
with lower value indicates the least recently used line with
in a set. The LRU implementation using the counter method
for a set is shown in figure 4. All registers are set to zero
initially. When a particular cache line within the set is being
accessed, the corresponding register value is compared with
other register values and set to the largest value. Finally,the
priority encoder chooses the line with highest register value
as the LRU line.

Reg 0 Reg 1 Reg N
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Encoder

Clk

Hit 0
Hit 1

Hit N
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Fig. 4. LRU Implementation using the counter method.

6) Mode Selector: The data cache can be configured as one,
two and four way set associative according to the input value
at a two bit mode selection terminal. In order to generate the
enable control signal for each of the four sets, these two mode
bits are combined with the A7 and A6 bits of the physical
address.

7) Cache Controller: Controls all operations within the
cache and is implemented using a finite state machine as
shown in figure 5. Control signals asserted during each state
are summarized in Table II.

1) Idle State: No memory access and the processor is idle
in this state. Controller remains in this state until some
read or write operation is requested by the processor. If
a read request is initiated by processor, control transfers
to the read state. If a write request is initiated, control
transfers to the write state.

2) Read State: In this state, the cache is checked for
availability of the requested address, as the processor
initiates a read operation. If the requested address is
currently in cache, a cache hit occurs and control returns
to the idle state during the next active clock. Otherwise,
a cache miss occurs and control transfers to readmiss
state to initiate main memory access.

3) ReadMiss State: Main memory read access is initiated
by the cache controller and control handed over to
readmemory state.
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4) ReadMemory State: Controller has to wait until main
memory finds the requested address and reads the data
from that location. Once main memory loads the data
contents on data bus, it asserts a ready signal to con-
troller and control transfers to readdata state.

5) ReadData State: The requested data is available on the
data bus. Write this data to least recently used cache
line and simultaneously load it to the processor’s data
bus to complete the read request. After the completion
of processor’s initiated read operation control goes back
to idle state.

6) Write State: In this state, the cache is checked for
availability of the requested address, as the processor
initiates a write operation. If the requested address is
currently in cache, a cache hit occurs and control returns
to writehit state during the next active clock. Otherwise,
a cache miss occurs and control transfers to writemiss
state. Whether it is a write hit or miss, data must be
written to cache and simultaneously updated to main
memory also.

7) WriteHit State: On a cache hit for write operation, the
controller stimulates the write control signal of data
cache to write the data contents sent by the processor and
also initiates write through for main memory. Control
transfers to writedata state on the next active clock.

8) WriteMiss State: On a cache miss for write operation,
data contents sent by the processor are written to least
recently used cache line and associated tag and valid
rams are also updated. Controller initiates write through
policy for main memory and transfers control to write-
data state on the next active clock.

9) WriteData State: Controller has to wait until main mem-
ory completes the write operation and sends back a ready
signal to the controller. After completing the requested
write operation, controller will come back to idle state.

TABLE II
ACTIVE HIGH CONTROL SIGNALS DURING EACH STATE

State Active High Control Signals

Idle None
Read PStrobe, PRW , PDataOE, PReadyEnable, Hit (for read hit)

ReadMiss PRW , PDataOE, Miss, Mstrobe
ReadMemory PRW , PDataOE, MRW

ReadData PRW , MRW , PDataOE, PDataSelect, CacheDataSelect, Ready
Write PStrobe

WriteHit Hit, MStrobe, MDataOE
WriteMiss Miss, MStrobe, MDataOE

WriteMemory MStrobe, Ready

D. Overall Architecture

The detailed architecture of the proposed design is shown in
figure 6, which consists of sub modules along with connecting
logic such as an Encoder, Tag Comparators, and several
Multiplexors. For simplicity we have chosen the following:

1) 16-bit address bus, which gives us a total address space
of 64K as main memory.

2) 256 bytes of cache, which means that only the 8 least
significant bits are required to address the cache.

3) Data bus of 8 bits.
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Fig. 6. Detailed architecture of the reconfigurable data cache.



The main memory is divided up into 256 blocks of 256 bytes
each, where each block is mapped to the cache. Because only
8 address bits are needed to identify the address in cache, the
16 bit physical address is divided into an 8 bit tag field and
an 8 bit index field. Due to the reconfigurable architecture,
the total cache of 256 bytes is divided into four sets of 64
locations each. Thus, we have used four sets of Tag, Valid,
and Data RAMs in this design.

IV. PROTOTYPING AND SIMULATION RESULTS

A. Implementation Flow

We followed a top-down flow for the implementation and
simulation of our design. First, we have logically and struc-
turally divided the main module into various submodules,aswe
did in the architectural design flow. Each submodule has been
designed, synthesized, and simulated individually. Once all the
submodules were ready and tested for functional verification,
we integrated them to obtain the main module.

B. FPGA Prototyping

The architecture of the reconfigurable data cache was mod-
eled using Verilog and the functional simulation was carried
out using Modelsim SE 6.3 e. The code is written in a
hierarchical fashion and is a combination of structural andsyn-
thesizable behavioral coding. This Verilog code was compiled
and synthesized using Xilinx ISE 9.1i. The implementations
are targeted for Xilinx’s Virtex-5 family of FPGAs. The Virtex-
5 family is built in a 65-nm copper CMOS technology. The
Virtex-5 Configurable Logic Blocks (CLBs) are based on 6-
input look-up tables and a flip-flop. Each CLB contains a pair
of bit slices; each bit slice further consists of four 6-input
look-up tables and four flip-flops, for a total of eight 6-input
look-up tables and eight flip-flops per CLB [20]. Complete
synthesis of all Verilog modules is performed along with their
mapping, placement, and routing. For functional verification
of the designed cache module in all three operational modes,
a trace file of 20 test cases has been applied through a driver.

Complete results obtained from the trace file in the three
different modes are summarized in Table III. The memory
write time for all three configurations (1-way, 2-way, and
4-way) is the same because we have used a write-through
policy for write operations. In this policy, the main memoryis
simultaneously updated with data cache for every write access.

Various design metrics of the proposed design in direct
mapped, two-way and four-way set-associative modes are
summarized in Table IV. The timing path from a clock to any
other clock in the design indicates the minimum period. The
proposed design possesses the smallest minimum period and
also the highest maximum operating frequency with respect
to 1-way, 2-way, and 4-way set-associative caches. The maxi-
mum path delay is an indicator of the maximum path from in-
puts to outputs. This delay is smallest for the proposed design.
The proposed design has obtained performance improvement
in terms of minimum period, maximum operating frequency
and maximum path delay due to distribution of clock in target
device (Virtex-5). In virtex-5 family of FPGAs, there are total

TABLE III
SUMMARY OF RECONFIGURABLE CACHE OPERATION IN THREE MODES.

Design Metrics Direct Mapped 2-Way 4-Way

Mode 00 01/10 11
No. of Access 20 20 20
Read Access 11 11 11
Write Access 9 9 9

Read Hits 2 7 7
Read Miss 9 4 4
Write Hits 2 4 4
Write Miss 7 5 5
Total Hits 4 11 11
Total Miss 16 9 9

Memory Read Time 1030 730 730
Memory Write Time 945 945 945

32 global clocks and each device is divided into regions for
distribution of clock. The design of the proposed module is
mapped into the target device in a very compact manner as
compared to the other three configurations, thus producing
a minimum timing path from one synchronous element to
another. Since the proposed design is mapped compactly,
maximum delay from any one node to any other node is also
small compared to other designs. The cell usage, expressed
in BELS, reports the count of all the logical cells that are
basic elements of the Virtex technology, for example, LUTs,
MUXCY, MUXF5, MUXF6, MUXF7, MUXF8. Flip-flops or
slice register counts indicates the total number of latchesand
flip-flops used by the design. The reconfigurable cache design
occupies a larger number of cells, slice registers and LUTs in
order to provide reconfigurability. Table V summarizes design
metrics of the reconfigurable data cache for three different
FPGA technologies. The power consumption has been calcu-
lated under ambient temperature of25

◦C. Comparison of the
proposed design with other reconfigurable memory is given in
Table VI.

TABLE IV
COMPARISON OF VARIOUS DESIGN METRICS OF PROPOSED DESIGN WITH

DIRECT-MAPPED, 2-WAY, AND 4-WAY SET ASSOCIATIVE CACHES.

Design Metrics Direct Mapped 2 Way 4 Way Reconfi.
Cache

Maximum Frequency 154.036 131.683 184.706 212.513
(MHz)

Minimum Period (ns) 6.492 7.594 5.41 4.706
Maximum Combinational 4.901 4.897 3.338 3.342

Path Delay (ns)
Cell Usage (BELS) 399 782 1468 1888
FlipFlops/Slice Reg 267 530 946 1228

Slice LUTs 395 776 1446 1881
IO Utilization 56 56 56 58

No of Bit Slices 63 1006 1666 1991
Power (mW)* - - 1033 1362
Gate Count 135,952 271,795 280,781 288,986

V. CONCLUSIONS ANDFUTURE RESEARCH

This paper presented the architecture and design of a new
N-way reconfigurable data cache for embedded systems. The
proposed data cache can be configured as direct-mapped,
two-way and four-way set-associative to fulfill the systems’



TABLE VI
COMPARISON OF PROPOSED CACHE WITH EXISTING RECONFIGURABLE CACHE.

Name Multi-function Way Concatenation Reconfigurable Proposed
Computing Cache [4] Memory [16] Design
Cache [15]

Year 2001 2003 2005 2009
Performance Up to factor of Due to way In terms of
Improvement 50-60 for concatenation and Maximum

computational way shutdown Frequency,
applications circuitry Combinational

delay
Hardware and 10-20% of base Negligible 15% Due to Mode
area overhead cache memory Selector Unit
Access Time Increased by1.6% As 4-way Increased by10%

Associativity or 1,2,4-way Cache, FIFO, 1,2,4-way
Configuration Scratchpad

Power Dynamic Power Power Overhead Static Power
savings up to40% 10% Overhead

compared to 20%

conventional 4-way
Simulation Simple Scalar ModelSim
approach

TABLE V
COMPARISON OF DESIGN METRICS OF RECONFIGURABLE DATA CACHE

FOR VARIOUSFPGATECHNOLOGIES.

Design Metrics QPro Virtex Automotive Virtex 5
Hi-Rel XQV1000 Spartan 3E

Maximum Frequency (MHz) 37.111 76.429 212.513
Minimum Period (ns) 26.946 13.084 4.706

Maximum Combinational 21.074 6.280 3.342
Path Delay (ns)

Cell Usage (BELS) 7596 4726 1888
FlipFlops/Slice Reg 1311 1230 1228

Slice LUTs 6361 4014 1881
IO Utilization 58 58 58

No of Bit Slices 3335 2090 1991
Power (mW) - 102 1362

requirements. We have achieved this reconfigurability with
the help of a mode selector while utilizing the full capacity
of cache. The FPGA implementations of the reconfigurable
cache along with direct-mapped, two-way and four-way set-
associative caches have been demonstrated. The performance
of the proposed design is compared with the direct-mapped,
two-way and four-way cache architectures. The proposed
design can be further optimized in terms of speed, area and
power consumption.
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