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Abstract—Fast design space exploration of complex nano-
CMOS mixed-signal circuits is an important problem. In this
paper, a design process flow that uses metamodels is introduced.
In this flow the most important task is the sampling of the design
space. In this paper, different sampling techniques for producing
an accurate metamodel are investigated to minimize the number
of samples required by using a nano-CMOS ring oscillator (RO)
as an example. Through SPICE simulations, it is shown that
the parasitics have a drastic effect on performance metrics, such
as the frequency of oscillation. Alternative sampling techniques,
both random, such as Monte Carlo (MC), and uniform, such as
Latin Hypercube Sampling (LHS), and Design of Experiments
(DOE), are considered as and compared for speed and accuracy.
Due to the time constraints of the circuit design process, this
paper can be used as a guideline for which sampling technique
will produce the most accurate result to minimize the design time.
All a experimental results are presented for a45 nm technology.

Keywords-Nanoscale CMOS, Mixed-Signal Circuits, Metmod-
eling, Statistical Sampling, Circuit Simulation

I. I NTRODUCTION AND MOTIVATION

The design cycle for typical analog circuits is very long
since accurate, circuit-level simulation is very CPU intensive.
This situation is further aggravated when such circuits are
designed using nano-CMOS technology where the transistors
are modeled using 100’s of parameters. It is also very difficult
to accurately predict the performance of analog circuits in high
frequency applications due to the many parasitic effects [1],
[2]. To meet the desired design specifications, the original
design is iteratively adjusted by attempting different values
of the design variables. A large number of design variables
results in an enormous amount of different possibilities for
alternative design tradeoffs. Exhaustive search of the design
space to obtain an optimal solution is quite time consuming
and, for typical complexity circuits, it is an impossible task
to exhaustively search the space. An alterative of exhaustive
search in the design space of theactual circuit is performing
a fast search using ametamodel. A typical circuit design
already consists of a hierarchy of models at different levels
of abstraction. At the lowest level, BSIM4 models of transis-
tors are used to create SPICE netlists of small design units
which are further assembled into subsystems and finally, into
complete systems. Themodelof the circuit is thus a very large,
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hierarchical SPICE netlist and typically includes parasitics
which are extracted from the final layout. Optimal values
for the design specifications can be obtained by creating an
accurate metamodel for that design by sampling data from the
simulated circuit. The metamodel is a mathematical model that
acts as a substitute (surrogate) for the original model. Since
it is a very expensive process to manufacture the circuit it
is essential to create the closest possible result to generate a
circuit that can be manufactured with the lowest tolerance of
error. SPICE simulation tools are used to simulate circuits in
different design steps. Very complex circuits can take days
if not weeks to simulate. Hence, the amount of simulation
iterations need to be as low as possible to minimize the time
of the design process. The use of metamodels introduces a
simpler way of understanding the behavior of the circuit and
an easier model to conduct simulations and apply optimization
techniques. To generate an accurate metamodel a designer
needs to take samples from the simulated circuit’s response
only a limited number of times, sufficient to construct the
metamodel. This paper provides guidelines on which sampling
technique works best, using a sample mixed-signal nano-
CMOS circuits with full parasitics as well as estimates on
the number of samples that produce the desired result with
the least amount of simulations.

The novel contributions of this paperare as follows:

1) This paper proposes technology independent metamod-
eling sampling techniques.

2) Five distinct random and uniform metamodeling sam-
pling techniques are introduced. They include Monte
Carlo (MC), Latin Hypercube Sampling (LHS), Middle
Latin Hypercube Sampling (MLHS), and Design of
Experiments (DOE), and are applied to nano-CMOS.

3) The use of these sampling techniques in metamodeling
is demonstrated for a45 nm CMOS ring oscillator.
The oscillator is characterized for frequency, power and
jitter. The full RCLK (resistance, capacitance, and self
and mutual inductance) parasitic extraction is performed
and compared to the schematic of the oscillator. The
metamodels are generated on the parasitic netlist.

The rest of the paper is organized as follows: section II
briefly discusses previous works relevant to metamodeling.
The 45 nm CMOS based ring oscillator that is used in
this research to provide sampling data is discussed in Sec-



tion III. Section IV shows the proposed design flow. Section V
introduces five different sampling techniques and they are
compared in Section V. The paper is concluded with directions
for future research in Section VI.

II. RELATED PRIOR RESEARCH

The general theory of metamodeling, associated sampling
techniques, and computer experiments, as applied in various
fields of science and engineering can be found in [3] and
[4], but these works do not address nano-CMOS technolo-
gies. In [5] the author proposes the use of metamodels for
modeling inductors in CMOS circuits. The technique that
the author proposes does not use sampling techniques but
rather uses mathematical formulas for the model estimation
and optimization. A technique for the automated creation of
surrogate multivariate mathematical models by using CAD-
Model Construction for microwave components is developed
and tested in [6]. This technique is compatible with SPICE.
Considerable work on metamodeling and surrogate techniques
has been done for digital VLSI but not analog or mixed-signal
circuits. In [7] support vector machine (SVM)-based machine
learning is proposed as a surrogate for expensive circuit-level
simulation. A statistical wire-length estimation approach using
surrogate modeling is proposed in [8]. The application of
statistical techniques in timing analysis of critical paths using
small-scale Monte-Carlo is presented in [9].

The design and characterization of ring oscillators covering
jitter, power and frequency can be found in [10], [11] and
[12]. These are design research which do not deal with
metamodeling rather perform design cycle on the actual circuit
which are time consuming.

III. D ESIGN AND CHARACTERIZATION OF THE CASE

STUDY CIRCUIT: A 45 NM CMOS RING OSCILLATOR

A Ring Oscillator (RO) consists of an odd amount of
inverters connected in series with the output fed back to
the input to create oscillations which are derived from the
propagation delay of each inverter. Ring oscillators are useful
in die and new technology testing and are commonly to find
the delay times of logic gates. Figure 1 shows the schematic
diagram of a three inverter RO. For a given technology node,
the designer can adjust the widths of the NMOS and PMOS
to obtain the desired frequency. For this simple circuit, the
design space is spanned by the two widths.

A. Logical Design of the 3 Inverter Ring Oscillator

The design variable chosen for this design are: length of
transistors isLn = Lp = 45nm, width of NMOSWn =
4L = 120nm and width of PMOSWp = 8L = 240nm at a
nominal operating voltageVdd = 1V, as shown in figure 1.
All simulations will also assume that the ambient temperature
of 27 degrees Celsius is constant and will not change, since it
can affect the output dramatically. Self-heating effects are not
taken into account in this work. Assuming equal fall and rise

times of each inverter, the frequency of oscillation for the RO
is calculated by the following expression [13]:

f =

(

1

2Ntp

)

, (1)

where N is the (odd) number of inverters andtp is the
propagation delay of each inverter.

Wp=240nm
L=45nm

L=45nm

Wp=240nm
L=45nm

Wn=120nm
L=45nm

Wn=120nm

Wp=240nm
L=45nm

Output

Vdd

Gnd

Wn=120nm
L=45nm

Fig. 1. Transistor-level schematic of the ring oscillator.

B. Physical Design of the 3 Inverter Ring Oscillator

At nano-CMOS technologies, where the frequency is in the
GHz range, parasitics have a dramatic effect on performance.
It is difficult to estimate these parasitics without actually
performing the layout, which is shown in figure III-B. RCLK
parasitic extraction on this layout provide the full SPICE
netlist. The physical design which involves tedious manual
work, by using metamodeling will only need to be done
twice, i.e., once for the initial design and one final time after
obtaining the optimized data from the metamodel.

Fig. 2. RO layout for a45nm CMOS technology.

The parasitics from this layout result in a dramatic decrease
in frequency versus the regular schematic simulations. The
presence of parasitics for this simple circuit also increases
the simulation run time a factor of 3. For a present day
complex circuit with thousands of transistors, the simulation



time will be performed in days, if not weeks, depending on
the complexity of the circuit. Table I compares the number
number of components between the regular schematic and and
the parasitic netlist.

TABLE I
NUMBER OF COMPONENTS IN THE RING OSCILLATOR CIRCUIT

Simulation Transistors Capacitors Resistors Total

Without parasitics 6 0 0 6
With parasitics 6 82 19 107

The creation of a different layout by adjusting the widths
of the CMOS components toWn = 360nm andWp = 720nm
did not show a big effect of width on the output frequency.
On the other hand, the change between the schematic and
parasitic outputs is of the order of 40%. Table II compares the
simulation results with and without parasitics.

TABLE II
SIMULATION COMPARISON

Extraction Power Frequency

Schematic 27.17µW 16.21 GHz
120nm-240nm Parasitic 26.96µW 9.88 GHz

C. Simulation and Characterization of the Ring Oscillator

Table II shows the results for both simulations from the
original schematic and from the RLCK extracted netlist runs.
The frequency has dropped dramatically by approx. 40% due
to the presence of the parasitics. It is observed that the total
power consumption has not been altered, and only changed by
merely 1%. This data shows that the extraction of parasitics is
necessary to calculate the desired output such as the frequency
for this circuit. The eye diagram in figure 3 shows that the
jitter effect for a100 ns period is negligible, even when full
parasitics are taken into account.

Fig. 3. Eye diagram of parasitic netlist.

IV. M ETAMODEL DESIGN FLOW

The proposed design flow is shown in figure 4. Once the
logical design is done and meets the required specifications,
an initial physical design is implemented. The physical design
is then subjected to Design Rule Check (DRC), Layout vs.
Schematic (LVS) and parasitic (RCLK) extraction. If the
specifications are not met, the parasitic Netlist is then created
with the design variables used as parameters. This netlist is
then used by our automated process to create a metamodel
by applying a sampling technique described in this paper.
Once the metamodel is created it can be optimized to find the
parameters for the variables that were chosen before. The final
physical design is created by using the parameters from the
optimization. By using this approach, the designers only need
to create the physical design two times, one before the creation
of the metamodel and its optimization (initial design) and
one after the optimization of the metamodel (final design). In
this approach the production of a very accurate metamodel is
essential for this algorithm to work properly. Hence this paper
covers metamodel sampling techniques and their accuracy.
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Fig. 4. Metamodel-based design flow.



V. STATISTICAL SAMPLING TECHNIQUES

An accurate metamodel provides designers with a good
understanding of the design’s behavior as the design space
is traversed. The requirement of obtaining accurate results
with a small number of samples will minimize the time for
design development and circuit generation, which includes
the generation of the final physical layout. By creating an
accurate metamodel one can optimize the design to the needed
specifications. We divided the sampling techniques into three
different categories: random, uniform and Design of Experi-
ments (DOE). The generated sample data can e fitted in many
different ways to generate a metamodel. Of course, the choice
of fitting algorithm can affect the accuracy of the metamodel.
For comparison purposes, all future data will be fitted into
polynomial regression models in powers of four except the
DOE which is fitted in powers of two due to the lack of
sampling points. Thus the metamodel has the following form:

y =

k
∑

i,j=0

(

αij × xi
1 × x

j
2

)

, (2)

wherey is the response being modeled (frequency in our case),
x = [Wn,Wp] is the vector of design variables andαij are
the coefficients determined by the polynomial regression.k =4
except in the case of DOE wherek =2.

Of course, thetrue response of the circuit is typically
unknown because we are working with a limited number
of samples. However, since the test circuit is intentionally
simple (to allow exhaustive sampling), we can use 100,000
points to generate an extremely accurate “golden” response
surface which can be used for validation and evaluation
of the various metamodels. In the following discussion, the
“golden” response will be taken as the true circuit response.
In more complex circuits, the actual verification will probably
use under 100 sample points and, for very large circuits,
substantially less points. The square root of mean square
error (RMSE), shown in equation 3, is used to compare the
sampled data response of the parasitic netlist to the “true”
response. RMSE shows the departure of the metamodel from
the true model. The smaller the RMSE value, the better the
metamodel [4]. Since we are also interested in the accuracy of
the metamodel, we calculated the standard deviation (σ) for all
100,000 verification points of the exhaustive sampling, which
is calculated as shown in equation 4. The generation of the
sampling points, SPICE runs and post-processing calculations
are done automatically using a combination of commercial and
in-house tools by using the following expressions:

RMSE =

√

√

√

√

1

N

N
∑

k=1

(y(xk)− ŷ(xk))
2
, (3)

σ =

√

√

√

√

1

N

N
∑

i=1

(|y(xk)− ŷ(xk)| −RMSE)2. (4)

N =100,000 random pointsxk are selected in the design
domain T to evaluate the metamodels. These points are

checked to ensure that they are not the same points used
in the generation of the golden model. This would generate
artificially small values of the RMSE.y(xk) andŷ(xk) are the
responses at pointxk of the golden model and the metamodel,
respectively.

A. Exhaustive Sampling

Exhaustive sampling could be used if the simulation time is
not an issue. Withm as the number of variables andn as the
number of runs for each variable the amount of samples it will
take to create a metamodel will benm. The RMSE for a large
amount of m is very small. In our case, taking in consideration
the width of PMOS and NMOS as variables and running the
simulation for these two variables 100 different times each, we
obtain 10,000 simulation results for the given RO. The RMSE
for a metamodel of that amount of number of runs is minimal.
Figure 5 shows the surface of the frequency output on thez-
axis withWn andWp on the x- and y-axis, accordingly. Since
the calculated RMSE is very small for this metamodel, we can
conclude that we can use the generated metamodel’s data as
the golden model for a comparison as the actual results for
future simulations. Running this many simulations to receive
an almost perfect metamodel is usually not practical in the
design process. We will try to minimize the sampling amount
for these two variables to receive the best metamodel that fits
the design for the given ring oscillator.
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Fig. 5. 10,000 data points exhaustive sampling.

B. Random Sampling: Monte Carlo

Monte Carlo or random sampling is a technique which
samples the data for each variable, by pickingn random data
points for each variable in the domainT . Figure 6 shows
the results for creation of multiple metamodels with different
number of sample amounts and their RMSE results. Note that
the RMSE and its standard deviation will both change each
time if the simulation is performed with the same amount of
data points, since the data could have some areas of unsampled
points or an over-abundant number of points in one area which
is caused by the uneven distribution of sampling points.
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Fig. 6. RMSE data for Monte Carlo sampling. The error bars haveunequal
lengths due to the logarithmic scale.

C. Uniform Sampling

There are different kinds of uniform sampling techniques.
Latin Hypercube Sampling (LHS) and Middle Latin Hyper-
cube Sampling (MLHS) techniques are common. There are
also many variants which are derived from these two, such as
Orthogonal array-based Latin hypercube design, Symmetric
Latin hypercube design, orthogonal column LHS, and Opti-
mal Latin Hypercube design. Uniform sampling results in a
distribution that is even. Given that the points are more evenly
spaced out in the domain ofT this distribution of points
produces more effective coverage than random sampling.
Uniform sampling techniques can deal with a large number of
runs and input variables. They also are computationally cheap
to generate. Both LHS and MLHS RMSE results are smaller
than simply random sampling technique such as Monte Carlo.
Both divide the domainT into n amount of Latin squares, and
a data point is then sampled from each square. The drawback
for both designs is that the smallest possible variance for the
sample mean can never be reached [4].

1) Latin Hypercube Sampling:Latin Hypercube Design
produces a random point within the generatedn amount
of Latin squares on the domainT . This technique provides
more evenly distributed sampling points than random sampling
techniques, but the samples can still be bunched up together as
the samples are take randomly from each Latin square and they
can be adjacent to each other. Considering the same number of
points as the Monte Carlo generated samples, figure 7 shows
the RMSE results for LHS metamodels.
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Fig. 7. RMSE data for LHS sampling.

2) Middle Latin Hypercube Sampling:The Middle Latin
Hypercube Sampling (MLHS) technique is very similar to

TABLE III
RMSE COMPARISON FORDIFFERENTSAMPLING TECHNIQUES(IN MHZ)

Samples MC LHS MLHS

N µ σ µ σ µ σ

25 57.5 42.9 35.6 19.1 36.0 26.2
50 24.0 12.9 35.2 19.1 27.4 14.8
100 22.1 9.79 20.0 10.7 24.8 14.7
200 15.9 7.39 14.9 9.04 20.5 11.2
1000 14.1 7.21 11.7 7.81 15.4 9.44
5000 8.20 5.62 12.0 5.84 5.99 3.04

regular LHS. It also divides the domainT into n amount of
Latin squares, but instead of randomly sampling from each
of those squares, it picks the middle value from each one.
This technique is more uniform than the LHS, but is not able
to sample the regions close to the edge of the domainT .
Considering the same number of points as the Monte Carlo
generated samples, figure 8 shows the RMSE results for LHS
metamodels.
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Fig. 8. RMSE data for MLHS sampling.

D. Design of Experiments Sampling

Design of Experiments (DOE) is a technique that is most
commonly used with a large number of variables. A DOE
metamodel was created from 9 points, 3 per axis and their
intersections. The metamodel can only be fitted using a 2nd
degree polynomial function, instead of the 4th in the other
examples, due to the small amount of samples. Therefore
the RMSE that was calculated for the DOE metamodel is
considerably higher in comparison to the other techniques.
The RMSE that was calculated for the DOE sample was 750
MHz with a standard deviation of 410 MHz. The highest
variance for the error was 2.11 GHz. This indicates that DOE
is not a competitive sampling technique for a small number
of variables.

E. Comparative Discussion of Sample Data

The resultant response surfaces for the four sampling tech-
niques discussed previously are shown in figure V-E, while
table III shows a quantitative comparison of the RMSE per-
formance for each method.

MC sampling produces higher RMSE than uniform sam-
pling because it is random and might not cover the full spec-
trum of its design variable. It is clear from the data provided



(a) DOE of 9 points (b) LHS for 5000 points

(c) MLHS for 5000 points (d) MC for 5000 points

Fig. 9. Response surfaces.

in table III that uniform sampling provides superior accuracy
to random sampling. Designers should choose LHS or MLHS
over MC but the trend in typical design environments is the
opposite. This is probably due to the simplicity of running
MC versus LHS or MLHS: most commercial simulators can
perform MC with a simple directive. Uniform sampling, on the
other hand, requires extensive setup. However, the improved
accuracy is well worth the extra effort.

VI. CONCLUSIONS ANDFUTURE RESEARCH

In this paper, we presented a novel design flow using
metamodels and compared commonly used sampling tech-
niques using a nano-CMOS ring oscillator as case study. The
presented design flow can be used to speed up the design
process of nanoscale circuits in general. The frequency of the
RO was used as the objective function for target specifications.
A thorough analysis for various sampling data rates and
methods demonstrates that uniform sampling techniques have
better overall performance (in terms of accuracy) than the
randomized and DOE sampling techniques. Whether LHS or
MLHS is more appropriate for a particular design depends on
whether edge effects are important or not. In our opinion, LHS
is typically preferable over MLHS because it covers the design
space uniformly, while, at the same time, providing for a small
amount of randomness in the samples. Our future research
will include specific optimization techniques as part of the
proposed design flow. We will conduct an extensive study of
metamodeling-based optimization for a large number of design
variables by designing with our flow for more complex nano-
CMOS circuits.
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