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Abstract
We propose a novel design flow for mismatch and process-

variation aware optimization of nanoscale CMOS Active Pixel
Sensor (APS) arrays. As a case study, an8 × 8 APS ar-
ray is designed using the proposed methodology for32nm

CMOS technology. Performance metrics such as power, output
voltage swing, dynamic range (DR) and capture time (delay)
have been measured. The baseline results show a power con-
sumption of16.32µW , output voltage swing of428mV , dy-
namic range (DR) of 59.47dB and a capture time of5.65µs.
The baseline APS array is subjected to5% “intra-pixel” mis-
match and10% “inter-pixel” process variation and the effect
on power and output voltage swing has been observed. The
APS array is subjected to a design and analysis of Monte Carlo
experiments based optimization. Using this approach, we have
been able to achieve21% reduction in power (including leak-
age). To the best of our knowledge, this is the first ever nano-
CMOS implementation of an APS array optimized to be mis-
match and process variation tolerant.
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1 Introduction

The advent of nano-CMOS technology has brought about
significant challenges for analog and digital circuit design due
to process variation and mismatch [1, 6]. Process variation de-
scribes the die-to-die, wafer-to-wafer, or lot-to-lot variability
in which the same variation is assumed for the devices in a
particular circuit. Mismatch describes die or wafer-level vari-
ability, in which devices in the same circuit may have different
variations. For analog circuits, not only process variation but
also mismatch influences the circuit behavior. According to
the inverse square root law [3], mismatch becomes more se-
vere when transistor gate size decreases.To accurately predict
analog circuit behavior, a combination of mismatch and pro-
cess variation analysis is necessary.

The emergence of complex System-on-Chip (SoC) tech-

nologies for consumer-electronics applications has been driven
by the evolution of CMOS to nanoscale. These SoCs are
mixed-signal designs, embedding analog blocks along with
complex digital circuitry (i.e., multicores, logic blocks, mem-
ory, DSP). The growth of portable applications increases the
need for low-cost, low-power, high-performance solutions. As
an example, consider a typical digital camera SoC shown in
figure 1 [11]. The design of the primary components, i.e. the
APS array, has not taken advantage of nano-CMOS technol-
ogy, and hence we address variability aware design of nano-
CMOS APS in this paper to advance the state-of-the-art of ana-
log/mixed signal SoC (AMS-SoC).
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Figure 1. A typical CMOS sensor based digital
camera in a mobile phone

The novel contributions of this paper are the following:

(1) A novel flow is proposed for variability tolerant design
and optimization of nanoscale CMOS APS array.

(2) Two different mismatch and process variation concepts,
“intra-array mismatch” and “inter-array variation” are in-
troduced in the context of nano-CMOS APS circuits.

(3) A design and analysis of Monte Carlo experiments based
algorithm is proposed for mismatch and process-variation
aware design of an APS array. While a Monte Carlo ap-
proach gives a designer an idea about the circuit’s yield,
the DOE (Design of Experiments) approach allows dra-
matic reduction of the number of required simulations
while providing a near-optimal design.

(4) As a case study a32nm 8×8 CMOS APS array has been
implemented, tested successfully, and thoroughly char-
acterized. The APS array is subjected to simultaneous
5% “intra-array” mismatch and10% “inter-array” process
variation for robust design of the APS.



The rest of the paper is organized as follows: Section 2 dis-
cusses related research. The design and characterization of the
baseline APS array is discussed in Section 3. The variability
optimization methodology is presented in Section 4. The paper
concludes in Section 5.

2 Related Previous Research in APS

In [10], the authors have examined mismatch in photo-
detectors at2µm/1.2µm CMOS processes. In [7], the authors
have analyzed pixel mismatch. In [5, 15], low voltage APS are
proposed. In [12], the authors have analyzed the effect of tech-
nology scaling on readout time. A multiple-resolution APS is
presented in [2]. It is evident that the existing research in APS
does not consider all design challenges posed by nanoscale
CMOS technology, such as leakage current, variability, and
transistor reliability.The APS proposed in this paper is vari-
ability tolerant, designed using the smallest CMOS technology,
has the lowest power dissipation, and operates at the lowest
voltage (refer Table 1). Our APS incorporates the nano-CMOS
challenges and is most suitable for target AMS-SoCs.

Table 1. Comparative perspective of selected
existing APS arrays.

Works Node Supply Power Swing Range

Weng [14] 250 nm 1.8 V – 0.5 V –
Cho [4] 350 nm 1.5 V 550 µW – –
Ours 32 nm 0.9 V 16.32 µW 0.428 V 59.47 V

3 Proposed Flow for Variability-Aware Design
and Optimization of Nano-CMOS APS

3.1 The Proposed Design Flow

We propose a novel design flow presented for variability-
aware optimization of a nano-CMOS APS array in figure 2.
The first step in the design flow is the design of a baseline array
for a specific nano-CMOS technology node. Then the baseline
M ×N array is simulated for functional correctness. This step
is followed by measuring the baseline values of the various fig-
ures of merit, such as power, leakage, voltage swing, capture
time, etc. The target figures of merit which need to be opti-
mized are identified. As nanoscale circuits suffer from high
leakage, we have chosen to optimize average power (PAPS),
with minimum degradation in output voltage swing (Vswing).
These metrics are defined in Section 3.3. In the next step,
the parameters to be used for process variation are identified.
The array is then subjected to simultaneous “intra-array” mis-
match and “inter-array” process variation. The “intra-array”
mismatch can also be interpreted as pixel-to-pixel variation.
This enables designers to take into account the trade-off be-
tween matched transistor size and yield when designing their
circuits. Once the process variation results are analyzed, the
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Figure 2. The proposed design flow for optimal
design of nano-CMOS APS.

design flow proceeds to the optimization. In the optimization,
the parameters which are to be used as design variables are
identified. The end product is anM ×N APS array optimized
for nanoscale process variations.

3.2 Single Pixel Design Using 32nm CMOS

An active-pixel sensor (APS) is an image sensor consist-
ing of an integrated circuit containing an array of pixel sen-
sors, each pixel containing a photodetector and an active am-
plifier. There are many types of active pixel sensors including
the CMOS APS used most commonly in cell phone cameras,
web cameras and in some DSLRs (digital single-lens reflex)
cameras. Such an image sensor is produced by a CMOS pro-
cess (and is hence also known as a CMOS sensor), and has
emerged as an alternative to charge-coupled device (CCD) im-
age sensors.

The design of a3-transistor single pixel is presented as
shown in figure 3. The three transistors of the circuit are as
follows: (i) M1: reset transistor, (ii) M2: source follower tran-
sistor, and (iii) M3: access transistor.

A PMOS transistor (M1) has been employed as the reset
transistor, as this results in a higher output voltage swing as
compared to a conventional APS [5]. Transistor sizes are cho-
sen carefully for enough current, source follower gain, and iso-
lation of source follower output from the pixel output. In addi-
tion, the transistor sizes should be as small as possible for the
maximum photodiode/pixel ratio (“fill factor”), when consid-
ering the physical design in silicon. Table 2 shows the sizes
chosen for the transistors of the APS.

Table 2. Transistor sizes of the APS.
Transistor name size (W : L) for 32nm CMOS

M1 160nm : 32nm

M2 320nm : 32nm

M3 240nm : 32nm

The most important component of the APS, the photodiode
is modeled as a pulsed current source representing the pho-
tocurrent (Iphoto = 100nA to 350nA) in parallel with a ca-
pacitor representing the diode capacitance (Cdiode = 20fF )
and a DC current source representing the dark current (Idark =

2fA) [16]. Ibias = 500nA andCbias = 1pF are assigned to
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Figure 3. Circuit diagram of an active pixel sensor (APS).

the biasing circuitry. The values are selected to be consistent
with the 32nm technology node. Higher bias current (Ibias)
ensures a smaller readout time.

A typical two-dimensional array ofM × N pixels is orga-
nized intoM rows andN columns. Pixels in a given row share
reset lines, so that a whole row is reset at a time. The row se-
lect lines of each pixel in a row are tied together as well. The
outputs of each pixel in any given column are tied together.
Since only one row is selected at a given time, no competition
for the output line occurs. Further amplifier circuitry is typi-
cally on a column basis. Figure 4 shows the block diagram of
an8 × 8 APS array implemented using 64 single pixels of the
type shown in figure 3. The array is accessed pixel-wise. The
functional simulation results of the array are shown in figure 5
for high illumination photocurrent. We observe an output volt-
age swing of428mV . The result is obtained from transient
analysis of the APS array.
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Figure 5. Circuit simulation of the 8 × 8 APS ar-
ray.

3.3 Models For The Figures of Merit of The
APS Array

We now discuss the baseline characterization of the APS
array. The models used for characterizing the various figures
of merit are presented. The array has been characterized for
the following figures of merit or attributes: (i) Average power
dissipationPAPS , (ii) Capture timeCtime, (iii) Output voltage
swingVswing , and (iv) Dynamic RangeDR.

3.3.1 Power Dissipation

At nano-CMOS technology, the total power of the APS ar-
ray can be expressed as the sum of significant components as
follows:

PAPS = Pgate + Psub + Pdyn, (1)

wherePgate is the gate-oxide leakage,Psub is the subthresh-
old leakage, andPdyn is the dynamic power consumed by all
transistors in the array. Each of the current components can
be analyzed from their governing expressions to identify the
parameters affecting it.

Gate-oxide leakage current density of a device can be rep-
resented as follows [8, 13] :

Jox = α

(

Vox
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)2

× exp
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whereα andβ are technology dependent factors. From equa-
tion 2, we can see that gate-oxide leakage is exponentially de-
pendent on variations inTox. A higherTox leads to lower gate-
oxide leakage current. The subthreshold leakage current in a
transistor is represented as follows [9, 13]:

Isub = γ×exp

(

Vgs − VT

Svtherm

)

×

(

1 − exp

(

−Vds

vtherm

))

. (3)

whereγ = µ0 ×

(

ǫoxW
ToxLeff

)

v2
therme1.8. The subthreshold

leakage current is exponentially dependent on the threshold
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Figure 4. An 8 × 8 APS array constructed using a collection of APS.

voltage (VT ). From equation 3, we see that ifTox is increased,
the length (Leff ) is increased, and/or the width (Weff ) is re-
duced, there will be a reduction in the subthreshold leakage.
The dynamic power can be represented as follows:

Pdyn = η × CL × V 2

dd × f. (4)

This form of power dissipation depends on loading conditions
and not the device features. Also due to the quadratic rela-
tionship betweenPdyn andVdd, a lower supply leads to lower
dynamic power dissipation. The total power, accounting for
all the current components of APS arrayPAPS is the target at-
tribute to be optimized. The APS array consumes a baseline
total power of16.32µW for 32nm CMOS technology node.

3.3.2 Output Voltage Swing

The output voltage swing (Vswing) of the array is defined as
the maximum swing achieved by the output voltage. It is an
important figure of merit because it affects the dynamic range
(DR) of the array. From figure 5, we measure the baseline
Vswing as428mV . This value is47.6% of Vdd, which is in the
acceptable range (2).

3.3.3 Dynamic Range

The dynamic range of the APS array can be formulated as
follows [16]:

DR = 20 × log10






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)


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, (5)

where,

Qmax =

(

Cdiode × Vswing

q

)

, (6)

whereσ2

total = variance of noise due to readout and reset (in
electron2), tint = integration period. The baselineDR of the
APS for32nm CMOS technology is calculated to be59.47dB.

3.3.4 Capture Time

As discussed in section 3.2, the input to each pixel in the ar-
ray has been modeled in the form of a pulse shaped photocur-
rentIphoto. The capture time is defined as the delay from the
50% level of the input swing (Iphoto) to 50% level of the out-
put voltage (Vout). For measurement of capture time (Ctime)
of the array, we have considered the pixel in the middle of the
array, as it suffers the maximum loading. Thus it gives us the
maximumCtime of the array. The APS array has a baseline
Ctime of 5.65µs for 32nm CMOS.

The baseline characterization results for the APS array are
shown in Table 3.

Table 3. Baseline characterization results.
Parameter Value

Technology 32nm PTM
Vdd 0.9V

PAPS 16.32µW

Ctime 5.65µs

Vswing 428mV

DR 59.47dB

4 The Proposed Variability-Aware Optimiza-
tion

We now present the proposed algorithm used for APS ar-
ray optimization for nano-CMOS technology. The APS array
has been subjected to simultaneous “intra-array” mismatch and
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Figure 6. Distribution of (a) Average power PAPS

and (b) Output voltage swing Vswing for the case:
Vdd = Vdd−H and Tox = Tox−L. This is also the
baseline case.

“inter-array” process variation and the effects on the figures of
merit are studied. The process parameters identified for mis-
match and process variation are: (i) supply voltageVdd, (ii)
NMOS threshold voltageVTnmos, (iii) PMOS threshold volt-
ageVTpmos, (iv) NMOS gate-oxide thicknessToxnmos, and
(v) PMOS gate-oxide thicknessToxpmos.

The figures of merit under consideration arePAPS and
Vswing . Hence they form the objective setF for optimiza-
tion. The process parameters are subjected to “intra-array”
mismatch and “inter-array” process variation simultaneously
for R = 1000 runs. For the “intra-array” mismatch, the pa-
rameters are assumed to have a Gaussian distribution and are
assigned mean (µ) values as the baseline values specified in
the design, and a standard deviation (σ) of 5%. For the “inter-
array” process variation also, the parameters are assumed to
have a Gaussian distribution and are assigned mean (µ) values
as the baseline values specified in the design, and a standard
deviation (σ) of 10%. PAPS shows a lognormal distribution
in figure 6(a). Due to the significant impact of various leakage
mechanisms (Psub, Pgate) having an exponential relationship
with the process parameters, this observation is intuitive from
the governing expressions.Vswing shows a Gaussian (normal)
distribution (figure 6(b)). This is considered as the baseline
case.

To demonstrate the array optimization,PAPS minimiza-
tion andVswing maximization has been kept as the objective.
Power is always a constraint for nanoscale SoCs. HencePAPS

is chosen. Also,Vswing directly affects the dynamic range of
the APS, thus giving an important measure of performance.
However, the proposed methodology can be extended to other
figures of merit as well. This is a multi-objective optimization.
However, it is unlikely that both these objectives would be op-
timized by the same alternative parameter choices. For design
and analysis of Monte Carlo experiments, the parameters to be
used are: (i) supply voltageVdd, (ii) NMOS gate-oxide thick-
nessToxnmos, and (iii) PMOS gate-oxide thicknessToxpmos.
From equations (4), (2), (3), it can be seen that these param-
eters affect the power consumption significantly. Hence, they
form the design variable setD for the optimization algorithm.
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Figure 7. Distribution of (a) Average power PAPS

and (b) Output voltage swing Vswing for the case:
Vdd = Vdd−L and Tox = Tox−L.

We have not consideredVTnmos andVTpmos as optimization
parameters, as they are dependent on a variety of parameters
such as doping concentration of source or drain diffusions,
channel length.

We now present the algorithm for two values of design vari-
ables withH denoting high andL denoting low values. Thus,
Vdd−H , Vdd−L, Tox−H, andTox−L are the possible values of
the design variables.Vdd−H andTox−L are baseline values
as per32nm CMOS technology node.Vdd scaling refers to
reduction inVdd (i.e. fromVdd−H to Vdd−L), while Tox scal-
ing refers to increase inTox (i.e. fromTox−L to Tox−H). As
in a traditional CMOS process, the gate oxides of NMOS and
PMOS transistors are grown together,Toxnmos, Toxpmos are
scaled together i.e. they are assigned either a higher (Tox−H)
or lower (Tox−L) value together.

For the above scenario, we have4 different combinations.
However, the situation is much involved for other discrete sets
of design variables. These values are assigned to theµ of op-
timization parameters forR = 100 Monte Carlo runs. The ar-
ray is subjected to5% “intra-array” mismatch and10% “inter-
array” process variation for each of the4 combinations. The
Monte Carlo data forF are obtained, and normalized. Normal-
ization involves division of each value of the data by the max-
imum value of data. Theµ andσ values forPAPS andVswing

are recorded in Table 4 forVdd−H = 0.9V , Vdd−L = 0.7V ,
Tox−H = 2.0nm, andTox−L = 1.65nm. PAPS is observed to
have a lognormal distribution (figure 6(a), 7(a), 8(a), and 9(a))
andVswing is observed to have a Gaussian distribution (figure
6(b), 7(b), 8(b), and 9(b)) using a least squares fit.

Table 4. Monte Carlo simulation results.
Vdd Tox µPAP S

σPAP S
µVswing

σVswing

(V ) (nm) (µW ) (µW ) (mV ) (mV )

Vdd−L Tox−L 0.5774 0.1306 0.5058 0.1402
Vdd−L Tox−H 0.5517 0.0847 0.5373 0.1424
Vdd−H Tox−L 0.7314 0.1717 0.6902 0.1029
Vdd−H Tox−H 0.6839 0.0760 0.7120 0.1077

The following prediction equations are obtained using the
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Figure 8. Distribution of (a) Average power PAPS

and (b) Output voltage swing Vswing for the case:
Vdd = Vdd−L and Tox = Tox−H .
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Figure 9. Distribution of (a) Average power PAPS

and (b) Output voltage swing Vswing for the case:
Vdd = Vdd−H and Tox = Tox−H .

design of experiments method on monte carlo experiments:

µ̂PAP S
= 0.6361 + 0.0716× Vdd − 0.0183× Tox, (7)

σ̂PAP S
= 0.1157 + 0.0081× Vdd − 0.0354× Tox, (8)

µ̂Vswing
= 0.6113 + 0.0898× Vdd + 0.0133× Tox, (9)

σ̂Vswing
= 0.1233− 0.0180× Vdd + 0.0018× Tox. (10)

The prediction equations are of the form:

Ŷ = Ȳ +

(

∆Vdd

2

)

× Vdd +

(

∆Tox

2

)

× Tox, (11)

where Ŷ is the response,̄Y is the average,∆Vdd

2
and ∆Tox

2

are the half-effects of the design variables. A linear relation-
ship between the design variables and response is assumed,
with a maximum discrepancy of1% between the observed re-
sults and results calculated using the predictive equations. If
a non-linear relationship is assumed, the complexity would
increase accordingly. From equations 7, 8 and 10, we ob-
serve that̂µPAPS

, σ̂PAP S
andσ̂Vswing

are to be minimized for
power minimization, whilêµVswing

needs to be maximized for
Vswing maximization (equation 9). It can be seen thatµ̂PAP S

and σ̂PAP S
are perfectly correlated, i.e. optimizing the mean
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Figure 10. Objectives of the variability-aware
optimization.

would also optimize the standard deviation. However,µ̂Vswing

andσ̂Vswing
are not correlated. Hence a combined effect of the

mean and standard deviation must be considered, for possi-
ble generalization of the proposed methodology. Also, this in-
formation is available only after the prediction equations have
been obtained. The purpose of the paper is process optimiza-
tion so parametric yield is not considered. We form two objec-
tive functionsfPAP S

andfVswing
as follows:

fPAPS
= µ̂PAPS

+ 3 × σ̂PAP S
,

= 0.9832 + 0.0959× Vdd − 0.1245× Tox. (12)

fVswing
= µ̂Vswing

− 3 × σ̂Vswing
,

= 0.2414 + 0.1438× Vdd + 0.0079× Tox. (13)

Figure 10 shows the theory behind the formation of the ob-
jective functions. The idea is thatµbaseline of the figure of
merit to be optimized needs to be shifted left or right depend-
ing on whether it needs to be minimized (µminimized) or max-
imized (µmaximized). Also, the3 × σbaseline of the figure of
merit (which is a measure of the spread) needs to be minimized
to 3 × σminimized. A 3 × σ limit has been considered, so that
99.5% of all the figure of merit values will fall within the3×σ

limit. From equations 12 and 13, we see thatfPAPS
needs to be

minimized andfVswing
is to be maximized. The Pareto chart

for fPAPS
in figure 11(a) shows that the design variable set

D = [Vdd−L, Tox−H ] leads to the minimum value offPAP S
.

The value offVswing
corresponding to this set (figure 11(b)) is

also acceptable. This is confirmed by using this value ofD to
simulate the array which yields an acceptableVswing (46.4%
of Vdd). Power minimization is treated as primary objective.
We achieve a21% reduction inPAPS with a 24% penalty in
Vswing . The baseline and optimal values ofPAPS andVswing

are shown in Table 5. The algorithm is shown in figure 12.

5 Conclusion and Future Research

We have presented a novel design flow and optimization al-
gorithm suitable for variation-tolerant (robust) design of nano-
CMOS APS. A32nm 8 × 8 APS array has been subjected to
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Table 5. Baseline and optimal values of figures
of merit

Value PAPS (µW ) Vswing (mV )

baseline 16.32 428

Optimal 12.91 325

this design flow in the presence of simultaneous “intra-array”
mismatch and “inter-array” process variation. This gives APS
designers an insight into their circuits yield caused by tran-
sistor mismatch and process variation before going into fab-
rication. Design and analysis of Monte Carlo experiments on
the baseline array has been carried out leading to21% power
reduction at the cost of24% output voltage swing reduction.
In the future, we plan to investigate variability-area design of
APS for post-nano-CMOS, such as high-κ/ metal gate, Carbon
Nanotube, and Dual-Gate FETs.
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