
Simulink Based Architecture Prototyping of
Compressed Domain MPEG-4 Watermarking

Elias Kougianos1, Saraju P. Mohanty2, and Dhiraj K. Pradhan3

VLSI Design and CAD Laboratory, Computer Science and Engineering, University of North Texas, USA.1,2

Department of Computer Science, University of Bristol, UK.3

Email-ID: eliask@unt.edu1, saraju.mohanty@unt.edu2, pradhan@compsci.bristol.ac.uk.3

Abstract—We present a novel algorithm, architecture, and
high-level Simulink prototyping for visible watermarking of
MPEG-4 video streams. The watermark is inserted in the video
stream during compression, resulting in an optimized compres-
sion/watermarking algorithm and system. Discrete Cosine Trans-
form (DCT) watermarking, due to its robust nature, was chosen
in this work to accomplish MPEG-4 video copyright protection.
Drift compensation in the spatial domain is implemented for
obtaining a stable watermark. The algorithm will be useful
for insertion of broadcasters’ logo and subtitling in real-time
applications such as sports broadcasting in digital TV.

I. INTRODUCTION

As broadband Internet becomes widely available, multime-
dia resources can be openly accessed, and can be distributed
much more quickly and widely. From this trend, one can
predict that as more and more songs, movies and images
are exchanged on the Internet, download multimedia sales
will eventually surpass traditional sales. This development
could benefit the multimedia product owners, but also could
challenge their ownership because most multimedia resources
are distributed in unsecured formats. Moreover, this situation is
further degraded by the fact that duplicating digital multimedia
products is almost cost-free and instantaneous. To legal author-
ities, arbitrating the ownership of multimedia products is not
easy, unless a mechanism can guarantee the genuine integrity
of copyright. Multimedia watermarking is being investigated
as a solution for copyright and intellectual property protection.

Compress-Domain
Visible-Transparent

Watermarking

Broadcaster’s Logo

Video

Compressed

Watermarked Video

Video

Compressed

Video

Uncompressed

Compressed

or

Image

Fig. 1. Real-time logo insertion through compressed domain watermarking.

There is a need for real-time copyright logo insertion in
emerging applications, such as internet protocol television (IP-
TV). This is demonstrated in Fig. 1. The visible-transparent
watermarking unit accepts broadcast compressed video and
the broadcaster’s logo. The output is real-time compressed
(MPEG-4) video with the logo embedded. This situation arises
in IP-TV and digital TV broadcasting when video residing
in a server has to be broadcast by different stations and
under different broadcasting rights. Embedded systems that

are involved in broadcasting need to have embedded copyright
protection. Existing works [1], [2] use invisible watermarking,
not useful for logo insertion. Other existing works [3], [4]
are for images not for video. MPEG-4 is the mainstream
exchangeable video format in the Internet today because it
has higher and flexible compression rate, lower bit rate, and
higher efficiency while providing superior visual quality.

The novel contributions of this paper are as follows:
1) A compressed-domain perceptual-based adaptive visible

watermarking algorithm suitable for video broadcasting.
2) Application specific architectures for real-time water-

marking in the context of compressed video (MPEG-4).
3) Simulink prototyping of the proposed architectures

which can be integrated in multimedia producing ap-
pliances (e.g. digital camera, network processor).

The paper is organized as follows: Section II discusses prior
related research works. A new watermarking algorithm that
inserts watermark in the compressed domain is introduced in
Section III. In Section IV, we introduce proposed hardware ar-
chitectures for compressed-domain watermarking architecture.
High-level architectural Simulink prototyping and simulations
are presented in Section V. Experimental results are presented
in Section VI and conclusions are presented in Section VII.

II. RELATED PRIOR RESEARCH

Several watermarking algorithms have been presented in
the current literature for various types of media. These al-
gorithms, which are realized primarily as software, work off-
line; the multimedia information is first acquired and then the
watermarks are inserted before the watermarked information
is made available to the user. In this approach there is a
time gap between multimedia capture and its transmission.
The objective of this paper is to develop hardware assisted
watermarking architectures and systems that bridge this gap.
Many watermarking architectures are presented in the litera-
ture whose target is either low-power or real-time. In [5], [2]
a spatial domain real-time watermarking scheme is proposed
for television broadcast monitoring. In [6], a DCT domain
invisible watermarking architecture is presented. In [3], a
spatial-domain invisible-fragile watermarking architecture is
proposed. In [4], a hardware architecture that can insert two
visible watermarks in images in the spatial domain is intro-
duced. In [7], an adaptive DWT (discrete wavelet transform)
based visible watermarking architecture is proposed. In [8],

uncompressed domain visible watermarking architecture and
FPGA prototyping is proposed. To advance the state-of-the art
in video watermarking, a compressed-domain watermarking
algorithm and architecture is proposed for MPEG-4 for real-
time applications in this work.

III. A COMPRESSED DOMAIN VISIBLE-TRANSPARENT
WATERMARKING ALGORITHM FOR VIDEO

The goal of the proposed compressed-domain visible-
transparent video watermarking algorithm is adaptive fusion of
watermark image (logo or subtitle) in the video frames in the
compressed domain. There are several challenges that need to
be addressed to obtain an effective watermarking scheme, such
as: (1) selection of appropriate frame (I or B or P), (2) selection
of particular region in a frame, (3) selection of watermark
strength in a particular frame and across the frames, and (4)
compensation of drifting in motion vectors.

If C(i, j) are host video frame DCT coefficients and W (i, j)
are watermark image DCT coefficients, then watermarked
video frame DCT coefficients are obtained by [9]:

CW (i, j) = αn × C(i, j) + βn ×W (i, j), (1)

where αn is the scaling factor and βn is the watermark strength
factor. The relative values of αn and βn determine the strength
of the watermark for the nth 8 × 8 block of a frame. Their
values are computed based on characteristics of the host frame.

For a particular frame, given that human perception is
sensitive to image edge distortion, for edge blocks the value of
αn should be close to its maximum value αmax while the value
of βn should be close to its minimum value βmin. αmax and
βmin are user defined parameters. Since the watermark DCT
coefficients will be added to the video frame DCT coefficients,
the strength of the watermark needs to be adjusted such that the
distortion of these coefficients is minimal. Given that AC DCT
coefficients of strongly textured blocks have small variance σn,
it is desirable to make αn proportional to σn, and βn inversely
proportional to σn. Therefore, for non-edge blocks:

αn = σ∗n × exp
(
− (µ∗n − µ∗)2

)
,

βn =
(

1
σ∗n

)
×

(
1− exp

(
− (µ∗n − µ∗)2

))
.

(2)

σ∗n is the normalized natural logarithm of the variance of the
block’s AC DCT coefficients σn, given by:

σ∗n=
(

ln(σn)
ln(σmax)

)
with σn=

(
1
64

) ∑7
i=0

∑7
j=0

(
cij − µAC

n

)
(3)

In Eqn. (3), σmax is the maximum value of all the σn in a
frame, cij are the DCT coefficients, and µAC

n is the mean
value of the AC DCT coefficients in block n. In Eqn. (2), µ∗n

is the normalized mean value of the DC DCT coefficient in
block n. mu∗ is the normalized mean value of all c00(n) in a
frame consisting of N 8× 8 blocks. These are calculated as:

µ∗n =
(

c00(n)
cmax

)
and µ∗ =

(
1
N

)×∑N
n=1 c00(n). (4)

Once the intra-frame parameter issue is solved as above, the
next challenge is their determination for inter-frames. There

(a) Frame - 1, Watermark - 1 (b) Frame - 2, Watermark - 2

Fig. 2. For compressed domain video watermarking, drifting is an Issue.

are several approaches including the following: First, calculate
the parameters for each frame on the fly. However, it is a fact
that continuous, real-time calculation of the values of αn and
βn for each block within each frame being watermarked is
very expensive in terms of resource requirements and process-
ing time. Second, predetermine the parameters for benchmark
frames, store them in a buffer, and use them on the fly. The
second alternative is followed in this paper.

One of the major issues of compressed domain watermark-
ing is drifting. To comprehend the problem two test video
clips with two different watermarks are presented in figure 2.
As can be seen from the figure, for fast moving objects, if
the drift compensation is not implemented effectively, the wa-
termark (which is plain text for subtitling applications) is not
legible. The proposed algorithm takes appropriate measures to
address this issue. This is very important when subtitles are
watermarked over video.

The proposed watermarking algorithm is presented as a
flow chart in Fig. 3. The step by step detailed pseudocode
is presented in Algorithm 1. Watermarking in the compressed
domain is follows the DCT module inside a DCPM/DCT video
compression component module. The watermarking subjects
here are not independent frames as still images, they are
correlated frames with each other in temporal mode, i.e., inter
frames (P or B) predicated from intra frame. So, every object
in a base intra frame is inherited by predicted inter frames (P
or B) such that the watermark in intra frame appears in inter
frames (P or B) even though they are not embedded with the
watermark. However, if it overlaps with any moving objects in
the video scene, the watermark drifts around with the moving
objects. To obtain a stable watermark, drift compensation is
proposed to cancel the side effect [10]. The main concept is
to extract the watermark drift in inter frames (P or B), and
to cancel it by subtracting. A monochrome watermark image
is embedded into Y color space only. For color watermark
image embedding, all Y , Cb and Cr color spaces need to be
watermarked, respectively.

IV. THE PROPOSED WATERMARKING ARCHITECTURE

The proposed architecture is presented in Fig. 4. It has 3
encoding branches: A, B and C. In branch A, the watermarking
is inserted to all types of frames, i.e., I, B and P. So, in this
branch, inter frames B and P have two watermarks: one is
predicted from intra frame (I), and one is inserted. In branch

B or P
Motion
Vector

Motion Estimation

DCT

I, B, or P Frames?

I FrameDCT

Watermark Insertion

Video
frames
I, B, P

Watermark
Image

Quantization

Zig Zag

Entropy Code

Inverse Entropy Code

Inverse Quantization

Inverse DCT

Motion Compensation

Drift Compensation

Watermarking P/B Frame

Output
Buffer

Motion
Vector

Fig. 3. Compressed Domain Visible Video Watermarking Algorithm Flow.

B, the watermark is inserted to I frame only. However, B and
P have the same watermark by prediction. This watermark is
the drifted one and need to be canceled in the inter frames. In
branch C, the frames are compressed without any watermark.
Thus, branch A has two watermarks, one is stable, another is
drifted; branch B has one drifted watermark; branch C has no
watermark. By subtracting branch B with branch C, the drifted
watermark is extracted, and furthermore, by subtracting branch
A with the extracted drifted watermark, the drifting watermark
effect in inter frames is canceled. The purpose of branch C is
to cancel encoding noise in the drift compensation result.

Following are the main modules of the watermarking archi-
tecture: (1) Watermark embedding IBP, (2) Watermark embed-
ding I, (3) Frame buffer, (4) Discrete Cosine Transformation
(DCT), (5) Inverse DCT, (6) Motion estimation, (7) Motion
compensation, (8) Quantization, (9) Inverse quantization, (10)
Zig-Zag, (11) Inverse Zig-Zag, (12) Entropy coding, (13)
Inverse entropy coding, and (14) Controller. Description of
these modules is given below.

1) Watermark embedding IBP module: Embeds a water-
mark to every frame, I, B, P, sequentially. Inter frames B and P
have two watermarks. One inherited from the intra frame, and
one is embedded by the component module. The one inherited
is the one drifting in inter frames (B and P).

2) Watermark embedding I module: Embeds a watermark
to intra frame only. The inter frames (B and P) have the same
one watermark in intra frame by prediction. If the watermark
overlaps with moving objects, it will drift back and forth with
the moving objects.

3) Frame buffer: Buffers the frames during intermediate
computations by other modules. Its size capacity is sufficient
for one input group of pictures, motion vectors, and the output
stream. This is an external buffer which is different than the
block memory used by the motion estimation module.

Algorithm 1 The compressed domain watermarking algorithm

1: Input: Video RGB frames (N × M), watermark monochrome
image (N ×M).

2: Output: Watermarked MPEG-4 video stream.
3: Convert RGB color frames to Y CbCr frames.
4: Re-sample Y CbCr frames according to 4 : 2 : 0 sampling rate.
5: Buffer GOP (15 continuous adjacent frames) of Y CbCr frames.
6: Split Y frames into 16× 16 blocks and Cb and Cr frames into

8× 8 blocks.
7: Perform motion estimate for Y frames. Rescale each 16× 16 Y

blocks to 8 × 8 blocks. If the even first frame (I) of GOP then
go Step 11; If P frame then go to Step 8; If B frame then go to
Step 10.

8: Forward or Backward Motion Estimate Y frames with reference
frames (I or P frames). Obtain the Motion Vectors and prediction
errors of residual frame for Motion Compensation (MC). For Y
frame go to Step 11;

9: Find Cb / Cr Motion Vector and Prediction error. Go to step 11.
10: Use bilinear algorithm to interpolate Y frame and B frame motion

estimates with two P frames or I and P frames. Find the Motion
Vectors (MV) and prediction errors of residual frame for Motion
Compensation (MC).

11: Perform 2-D DCT on blocks of frames from Step 11, 12, 13, 14.
12: Perform 2-D DCT on the 1st 8×8 block for each 16×16 blocks

of watermark image.
13: Fuse Y of I, B, P frames with watermark image at DCT domain

from Step 11, 12.
14: Quantize 2-D DCT coefficient Matrix.
15: Perform Zigzag scanning of quantized 2-D DCT Matrix.
16: Entropy coding re-ordered 2-D DCT coefficient Matrix and

Motion Vector.
17: Send Cb and Cr frames to buffer.
18: Perform entropy decoding Y frame. Perform inverse zigzag

scanning. Perform inverse quantization. Perform inverse DCT.
19: If B, P frames then predicate frame with reference frame, Motion

Vector and run motion compensation with predication error. Go
to Step 24.

20: For original Y frame, run video compression without watermark-
ing as above without step 12, 13.

21: For original Y frame run video compression as above except just
watermarking I frame at Step 13.

22: Decode MPEG-4 stream from step 20, 21, respectively.
23: Extract drifting watermark by subtracting decoded video frames

between watermarked and un-watermarked frames from Step 22.
24: Subtract IBP watermarked frames with drifting watermark

frames.
25: Repeat Steps 7,8,10,11,14,15,16 on Y frames again.
26: Build structured watermarked MPEG-4 stream from buffer.

4) Discrete Cosine Transformation (DCT) or Inverse DCT
module: Calculates the DCT coefficients of the video frames
and it consists of two 1D DCT sub-modules. The algorithm
from [11] is used for our implementation. The 1D row DCT
of each 8 × 8 block is first computed. The column DCT of
each block is then carried out. A buffer is used to assist in
finding the transpose of the 1D row DCT. The controller for the
watermarking unit controls the DCT module. The buffer stores
1D row DCT coefficient before column DCT is computed.

5) Motion estimation module: It is composed of motion
detection and half pel modules. The macro block motion
detection core performs a search for the best match for each
macro block in the current frame based on a 3 × 3 macro

Watermark Image
DCT

Controller

Input Video Frames

Zig Zag QuantizationEntropy
Coding

Frame Buffer

Zig Zag Quantization

Zig Zag Quantization

DCTWatermark Embedding I, B, P

Watermark Embedding I

Watermark Embedding

A

B

Motion
Estimation

C

Inverse Entropy
Coding

Inverse
Zig Zag

Inverse
Quantization

Inverse
DCT

Motion
Compensation

C -

B

+

A
-

+

Drift Compensation

DCT

Quantization

Zig Zag

Entropy
Coding

Output
Compressed
Watermarked

Stream

Inverse Entropy
Coding

Inverse
Zig Zag

Inverse
Quantization

Inverse
DCT

Motion
Compensation

Inverse Entropy
Coding

Inverse
Zig Zag

Inverse
Quantization

Inverse
DCT

Motion
Compensation

Entropy
Coding

Entropy
Coding

Datapath
Control Signal

Fig. 4. Schematic representation of proposed watermarking architecture.

block area in the previous frame. Pixel data are separated by
component type, stored in off chip RAM, and macro blocks
are processed one at a time. Each macro block results in a
half-pel motion vector and a set of differences that could be
sent on to additional stages for encoding. The motion detection
core uses 16 block RAM modules and half pel uses 9 block
RAM modules to do the exhaustive search.

6) Motion compensation module: Rebuilds a new frame
resembling the original one by using reference frame, motion
vectors, and prediction errors. If it is intra frame, this block is
skipped. The input and output are buffered to the frame buffer.

7) Quantization module: Quantizes the DCT coefficients
according to predefined quantization tables. The input and
output are buffered to the frame buffer.

8) Inverse quantization module: Applies the quantization
table and inverse quantization equations to resume the original
8×8 DCT coefficient matrix. The input and output are buffered
to the frame buffer.

9) Zig-Zag Module: Performs zig-zag scanning of the DCT
for re-ordering of the DCT coefficients.

10) Inverse Zig-Zag Module: Inverse zig-zag scanning also
applies the zig-zag table to resume the original order of 8× 8
DCT coefficient matrix. The input and output are buffered to
the frame buffer.

11) Entropy coding module: Performs entropy coding
which is implemented as Huffman coding look up. It has
different submodules for variable length coding and pattern
matching, etc.

12) Inverse entropy coding module: Applies the Huffman
pre-calculated table as decoding lookup table. The input and
output are buffered to the frame buffer.

13) Controller module: Generates clocked addressing and
control signals to each individual component module in the
system to synchronize system functions. The address bus and
signals diagram showing the co-ordination of the architecture
modules is shown in figure 5.

Controller

IDCTM
E

Q Z
Z

Entropy

Water
Mark
Image

Frame
Buffer

DCT

Buffer Output
Buffer

SignalsAddress Bus

WM

Water
mark
Buffer

IE IZ IQ MC

Fig. 5. System address and signals of the compressed domain architecture.

V. SIMULINK PROTOTYPING

This section discusses Simulink modeling of the individual
architecture modules and the overall system architecture.

A. System level modeling with Simulink

To verify algorithm and architecture, firstly, a fast proto-
typing module is built with MATLAB/Simulink using func-
tion block sets. The methodology at this high level system
modeling is top-down:MATLAB/Simulink build-in functions
or block sets are used to create a top level conceptual system
module, then each function is tuned in details, or new func-
tional blocks are added. Both watermarking on uncompressed
and compressed domains is investigated at this stage.

B. System level modeling methodology

Simulink offers common video and image processing
functions and modules. The available function units are:
DCT/IDCT, SAD for Motion Estimation, Block Processing
(split), and Delay (Buffer). With minor work, Quantization,
Zig-zag scanning and Entropy coding are built. Then the sys-
tem level-modeling is accomplished as sub-tasks as follows:
Sub-task 1: Color conversion and sampling rate compression,
Sub-task 2: DCT domain compression in each frame, Sub-
task 3: Quantization and zig-zag scanning re-order, Sub-task

4: Entropy coding by looking up Huffman coding table, Sub-
task 5: Motion estimation and compensation only on I and
P frames, Sub-task 6: Interpolating B frames, Sub-task 7:
Uncompressed domain watermarking, Sub-task 8: Compressed
domain watermarking without drift compensation, Sub-task 9:
Drift compensation on compressed domain watermarking.

C. Modeling of the Architecture

The Simulink system block set diagram for MPEG-4 water-
marking in the compressed domain is shown in figure 6. Figure
6(a) presents the overall architecture. The watermarking block
in figure 6(b) embeds the watermark in all I, B and P frames.
As estimate, the watermark in I frame also appears in B and
P because they are predicted from I frame. It will result in
two watermarks in non-intra frames. The watermark predicted
from I frame will drift if it overlaps with moving objects in
the scene. So drift compensation is applied to cancel the B and
P’s watermark predicted from I frame. In figure 6(c), the block
”Encoder Y only I WM” compresses the original video and
watermark I frame only. Another block ”Encode Y without
WM” just compresses the original video, but does not embed
the watermark. The two encoders’ difference is the drifting
watermark. After decoding two video compression codes, the
drifting watermark can be extracted by subtracting the above
two videos. The ”Drift Compensation1” in figure 6(d) block
cancels the drifting watermark on B and P by subtraction.
From the above description, the conclusion is that above drift
compensation works in the spatial domain.

VI. EXPERIMENTAL RESULTS

This section discusses experiments which are performed for
the architecture using various test videos and watermarks. We
then discuss the performance of the architecture by analyzing
the watermarked clips that are produced.

A. Test with video clips

We performed exhaustive simulations to verify the proposed
algorithms and architectures with a large variety of watermark
images and video clips. For brevity, two sample watermarks
are shown in figure 7 and selected examples of watermarked
video are presented in figure 8. We introduced a different ran-
dom sequence of AVI [12] video clips and similarly different
watermark images to be embedded with the video clips, all
having dimensions of 320× 240.

B. Testing of watermarking quality

The standard video quality metrics mean square error
(MSE) and peak-signal-to-noise-ratio (PSNR) are applied
to quantify the system’s performance as [13], [11], [10]:

MSE =
∑M

m=1

∑N
n=1

∑3
k=1 |p(m,n, k)− q(m,n, k)|2
3×M ×N

, (5)

PSNR=10× log10

(
(2i − 1)2

MSE

)
, (6)

where p(m,n, k) and q(m,n, k) are the pixels after and before
processing, respectively. The average PSNR of watermarked

(a) Overall Architecture

(b) The Watermarking Encoder

(c) The Watermarking Encoder YUV

(d) Drift Compensation Module

Fig. 6. Simulink block set diagram for MPEG-4 compressed domain
watermarking.

compressed video was ≈ 20dB to 30dB. The low PSNR did
not degrade the perceptual quality of the video, as the low dB
is due to the fact that the watermark logo inserted is visible
and consequently becomes noise for the host video. The results
are consistent with other visible watermarking algorithms and
architectures available in the literature [4], [9], [8].

VII. CONCLUSIONS AND FUTURE RESEARCH

We demonstrated an MPEG-4 watermarking system and
algorithm. The architecture for the visible watermarking algo-
rithm was prototyped using Simulink. The algorithm, architec-

(a) Original Bird Video (b) Watermarked Bird (c) Watermarked Bird

(d) Original Dinner (e) Watermarked Dinner (f) Watermarked Dinner

Fig. 8. Selected sample videos used in the experiments.

(a) Watermark -1 (b) Watermark -2

Fig. 7. Sample Watermark Images.

ture, and its realization are suitable for real-time applications
such as digital video broadcasting, IP-TV, and digital cinema.
The watermarking techniques discussed in this paper also
can embed color or animation watermark even though still
monochrome watermark image is discussed here for simplicity.
Blur or even disappearance of fast moving video objects
after drift compensation could be caused by unsynchronized
frames during extracting the drifting watermark. Further test-
ing should be conducted, and a solution upon testing will
be proposed. The watermark is embedded in compressed
video, thus video processing can be done when one content
provide sends compressed video to different broadcasting
stations who then broadcast video with their logo without
fully uncompressing the video. Further research is under way
to extend the real-time performance of the system to HDTV
and higher resolutions and to improve the PSNR. In future
work, advanced MPEG-4 features, such as N-bit resolution,
advanced scalable textures, and video objects will be utilized.
Also, field-programmable-gate-array (FPGA) realization and
then custom chip design will be performed.

VIII. ACKNOWLEDGMENT

The authors acknowledge UNT graduate Wei Cai.

REFERENCES

[1] L. D. Strycker, P. Termont, J. Vandewege, J. Haitsma, A. Kalker,
M. Maes, and G. Depovere, “Implementation of a Real-Time Digital

Watermarking Process for Broadcast Monitoring on Trimedia VLIW
Processor,” IEE Proceedings on Vision, Image and Signal Processing,
vol. 147, no. 4, pp. 371–376, Aug 2000.

[2] N. J. Mathai, D. Kundur, and A. Sheikholeslami, “Hardware Implemen-
tation Perspectives of Digital Video Watermarking Algortithms,” IEEE
Transanctions on Signal Processing, vol. 51, no. 4, pp. 925–938, April
2003.

[3] A. Garimella, M. V. V. Satyanarayan, R. S. Kumar, P. S. Murugesh, and
U. C. Niranjan, “VLSI Impementation of Online Digital Watermarking
Techniques with Difference Encoding for the 8-bit Gray Scale Images,”
in Proceedings of the International Conference on VLSI Design, 2003,
pp. 283–288.

[4] S. P. Mohanty, N. Ranganathan, and R. K. Namballa, “A VLSI
Architecture for Visible Watermarking in a Secure Still Digital Camera
(S2DC) Design,” IEEE Transactions on Very Large Scale Integration
Systems, vol. 13, no. 8, pp. 1002–1012, August 2005.

[5] L. D. Strycker, P. Termont, J. Vandewege, J. Haitsma, A. Kalker,
M. Maes, and G. Depovere, “Implementation of a Real-Time Digital
Watermarking Process for Broadcast Monitoring on Trimedia VLIW
Processor,” IEE Proceedings on Vision, Image and Signal Processing,
vol. 147, no. 4, pp. 371–376, Aug 2000.

[6] T. H. Tsai and C. Y Wu, “An Implementation of Configurable Digital
Watermarking Systems in MPEG Video Encoder,” in Proceedings of
the IEEE International Conference on Consumer Electronics, 2003, pp.
216–217.

[7] Y. C. Fan, L. D. Van, C. M. Huang, and H. W. Tsao, “Hardware-Efficient
Architecture Design of Wavelet-based Adaptive Visible Watermarking,”
in Proceedings of 9th IEEE International Symposium on Consumer
Electronics, 2005, pp. 399–403.

[8] S. P. Mohanty, E. Kougianos, W. Cai, and M. Ratnani, “Vlsi architec-
tures of perceptual based video watermarking for real-time copyright
protection,” in ISQED, 2009, pp. 527–534.

[9] S. P. Mohanty, K. R. Ramakrishnan, and M. S. Kankanhalli, “A DCT
Domain Visible Watermarking Technique for Images,” in Proceedings
of the IEEE International Conference on Multimedia and Expo, 2000,
pp. 1029–1032.

[10] W. Cai, “FPGA Prototyping of a Watermarking Algortithms for MPEG-
4,” M.S. thesis, Univesity of North Texas, 2007.

[11] C. Loeffler et al., “Practical fast 1-D DCT algorithms with 11 multipli-
cations,” in Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing, 1989, pp. 988–991.

[12] “Xvid Codec,” http://www.xvid.org.
[13] J. Chen et al., Design of Digital Video Coding Systems - A Complete

Compressed Domain Approach, Marcel Dekker, New York, 2002.

