
A High-Performance VLSI Architecture for
Advanced Encryption Standard (AES) Algorithm

Naga M. Kosaraju Murali Varanasi Saraju P. Mohanty
Computer Science and Engineering Electrical Engineering Computer Science and Engineering

University of South Florida University of North Texas University of North Texas
Tampa, FL 33613. Denton, TX 76203. Denton, TX 76203.

Email: manjarikosaraju@yahoo.co.in Email: varanasi@unt.edu Email: smohanty@cs.unt.edu

Abstract— In this paper we present a high-performance, high
throughput, and area efficient architecture for the VLSI imple-
mentation of the AES algorithm. The subkeys, required for each
round of the Rijndael algorithm, are generated in real-time by
the key-scheduler module by expanding the initial secret key,
thus reducing the amount of storage for buffering. Moreover,
pipelining is used after each standard round to enhance the
throughput. A prototype chip implemented using 0.35µ CMOS
technology resulted in a throughput of 232Mbps for iterative
architecture and 1.83Gbps for pipelining architecture.

I. INTRODUCTION

Several techniques, such as cryptography, steganography,
watermarking, and scrambling, have been developed to keep
data secure, private, and copyright protected [1], [2]. Cryptog-
raphy is an essential tool underlying virtually all networking
and computer protection, traditionally used for military and
espionage. However, the need for secure transactions in e-
commerce, private networks, and secure messaging has moved
encryption into the commercial realm [3].

Advanced encryption standard (AES) was issued as Federal
Information Processing Standards (FIPS) by National Institute
of Standards and Technology (NIST) as a successor to data
encryption standard (DES) algorithms. In recent literature,
a number of architectures for the VLSI implementation of
AES Rijndael algorithm are reported [4], [5], [6], [7], [8].
It can be observed that some of these architectures are of low
performance and some provide low throughput. Further, many
of the architectures are not area efficient and can result in
higher cost when implemented in silicon.

In this paper, we propose a high performance, high through-
put and area efficient VLSI architecture for Rijndeal algo-
rithm that is suitable for low cost silicon implementation.
The proposed architecture is optimized for high throughput
in terms of the encryption and decryption data rates using
pipelining. Polynomial multiplication is implemented using
XOR operation instead of using multipliers to decrease the
hardware complexity. In the proposed architecture both the
encryption and decryption modes use common hardware re-
sources, thus making the design area efficient. Selective use of
look-up tables and combinational logic further enhances the ar-
chitecture’s memory optimization, area, and performance. An
important feature of our proposed architecture is an effective
solution of online (real-time) round key generation needing
significantly less storage for buffering.

II. RIJNDAEL ALGORITHM

Rijndael algorithm is an iterated block cipher [9] supporting
a variable data block and a variable key length of 128, 192 or
256 bits. The algorithm consists of three distinct phases: (i)
an initial data/key addition, (ii) nine (128-bits), eleven (192-
bits) or thirteen (256-bits) standard rounds, (iii) a final round
which is a variation of a standard round. The number of
standard rounds depends on the data block and key length.
If the maximum length of the datablock or key is 128, 192 or
256, then the number of rounds is 10, 12 or 14, respectively.
The initial key is expanded to generate the round keys, each
of size equal to block length. Each round of the algorithm
receives a new round key from the key schedule module.

Each standard round includes four fundamental algebraic
function transformations on arrays of bytes. These transforma-
tions are: byte substitution, shift row, mix column, and round
key addition. The final round of the algorithm is similar to
the standard round, except that it does not have MixColumn
operation. Decryption is performed by the application of the
inverse transformations of the round functions. The sequence
of operations for the standard round function differs from
encryption. The computational performance differs between
encryption and decryption because the inverse transformations
in the round function is more complex than the corresponding
transformation for encryption.

III. THE PROPOSED VLSI ARCHITECTURE FOR RIJNDAEL

The proposed architecture showing the order of operation
and control between the transformations is shown in Fig. 1(a).

A. Architecture of the Data Unit

The data unit consists of: the initial round of key addition,
Nr − 1 standard rounds, and a final round. The architecture
for a standard round composed of four basic blocks is shown
in Fig. 1(b). For each block, both the transformation and the
inverse transformation needed for encryption and decryption,
respectively are performed using the same hardware resources.
This implementation generates one set of subkey and reuses
it for calculating all other subkeys in real-time.

1) ByteSub: In this architecture each block is replaced by
its substitution in an S-Box table consisting of the multiplica-
tive inverse of each byte of the block state in the finite field
GF (28). In order to overcome the performance bottleneck,

Output

ByteSub

Transformation

Transformation

ShiftRow MixColumn

Transformation

Initial Round
Final Round /

Transformation

AddRoundKey

Initial Key

Encryption /

Decryption

Input

(a) Rijndael Algorithm Data and Con-
trol Flow

Round Key Addition

XOR block

ZY

XOR block

MUX

Mix Column

Multiplexer Block
Shift Row

MUXAffine
Mapping

Inverse
Affine
Mapping

8 * 256 ROM cells

multiplicative inverse
ByteSub

Round key

128

128

128

128

128

128

(b) Architecture for the Standard
Round in the Data Unit

Fig. 1. Top Level View of the Rijndael

the implementation of multiplicative inverses is carried out
using look-up tables (stored in a table of 8 × 256). The
implementation includes the affine mapping of the input in
both encryption and decryption processes as follows:
Affine Mapping: Out[i] = In[i]⊕ In[(i + 4)mod8]⊕ In[(i +
5)mod8]⊕In[(i+6)mod8]⊕In[(i+7)mod8]⊕CE[i], where
CE = 01100011 is a constant, leftmost bit the being MSB.
Inverse Affine Mapping: Out[i] = In[(i +2)mod8]⊕ In[(i +
5)mod8]⊕ In[(i+7)mod8]⊕CD[i], where CD = 00000101
is a constant, leftmost bit being the MSB.

2) ShiftRow: In this transformation the rows of the block
state are shifted over different offsets. The amount of shifts
is determined by the block length. The proposed architecture
implements the shift row operation using combinational logic
considering the offset by which a row should be shifted.

3) MixColumn: In this transformation each column of the
block state is considered as a polynomial over GF (28). It
is multiplied with a constant polynomial C(x) or D(x) over
a finite field in encryption or decryption, respectively. In
hardware, the multiplication by the corresponding polynomial
is done by XOR operations and multiplication of a block by
X. This is implemented using a multiplexer, the control being
the MSB is 1 or 0. The equations implemented in hardware
for MixColumn in encryption and decryption are as follows.
In encryption process,
Y = In0⊕ In1⊕ In2⊕ In3 and Z = Y .
In decryption process, T0 = In0 ⊕ In1⊕ In2⊕ In3, T1 =
T0⊕ [In2Trans(In2Trans(T0))],
Y = T1 ⊕ [In2Trans(In2Trans(In0 ⊕ In2))], and Z =
T1⊕ [In2Trans(In2Trans(In1⊕ In3))].
Out0 = In0 ⊕ [Y ⊕ In2Trans(In0 ⊕ In1)], Out1 =
In1⊕ [Z ⊕ In2Trans(In1⊕ In2)]
Out2 = In2 ⊕ [Y ⊕ In2Trans(In2 ⊕ In3)], and Out3 =
In3⊕ [Z ⊕ In2Trans(In3⊕ In0)].

Where, In2Trans(K) is the multiplication of the byte by
X (hexadecimal value 02) over GF (28). In0 is the least
significant 8 bits of a column of a matrix. Architecture of
different units are shown in Fig. 2 and the architecture of
MixColumn transformation is shown in the Fig. 3.

XOR

XOR

XOR

Trans

8

8

8

8

8

8

8

8

88

ZY

MULTIPLEXER (Encryption, Decryption)

8

8

8

8

8

8

8

8

8

T0

IN3

IN2

IN1

IN0

XOR

XOR

Trans

XOR

XOR

Trans

Trans

XOR

8

8

8 8

(a) For Computation of Y , Z

MultiplexerMultiplexerMultiplexerMultiplexer

XORXORXORXORXORXORXOR XOR

Multiplexer
(a7 ; a7’)(a7 ; a7’)(a7 ; a7’)(a7 ; a7’)(a7 ; a7’)(a7 ; a7’)(a7 ; a7’)(a7 ; a7’)

0a0a1a2a3a4a5 a6a7

MultiplexerMultiplexerMultiplexer

(b) For Multiplication by X (hex “02”)

Fig. 2. Architecture for Units used in Mix Column Transformation

Y[0]

Z

Z

Z

32

32

32

32

Fourth Column of State Matrix

Matrix

MatrixSecond Column of State

Third Column of State

 MatrixFirst Column of State

Z[0]

M
IX

C
O

L
U

M
N

 C
O

M
PU

T
A

T
IO

N
 O

F
Y

,Z
 (

E
nc

ry
pt

io
n,

 D
ec

ry
pt

io
n)

Out[3][2]

Out[2][1] Out[2][2]

Out[1][3]Out[1][2]Out[1][1]

Out[2][3]

Out[3][3]Out[3][1]Out[3][0]

Out[2][0]

Out[1][0]

Out[0][3]Out[0][2]Out[0][1]Out[0][0]

[3]

Y[3]

[2]

Y[2]

[1]

Y[1]

Fig. 3. Architecture for Mix Column Transformation for 128 bits

4) AddRoundKey: In this transformation (architecture rep-
resented in Fig. 4), the round key obtained from the key
scheduler is XORed with the block state obtained from the
MixColumn transformation or ShiftRow transformation based
on the type of round being implemented. In the standard
round, the round key is XORed with the output obtained from
the MixColumn transformation. In the final round the round
key is XORed with the output obtained from the ShiftRow
transformation. In the initial round, bitwise XOR operation is

performed between the initial round key and the initial state
block.

K (i)00 K (i)01
K (i)02 K (i)03

K (i)31 K (i)32 K (i)33

00B (i) 01B (i) 02B (i) 03B (i)
31B (i) 32B (i) 33B (i)

00B (i+1) 01B (i+1) 02B (i+1) 03B (i+1) 31B (i+1) 32B (i+1) 33B (i+1)

Ist byte 2nd byte 3rd byte 4th byte 16th byte15th byte14th byte

Fig. 4. Architecture for Round Key Addition Transformation

B. Architecture for Key Scheduling

In the key scheduling module (Fig. 5), the initial key is
expanded and the generated round keys are stored in four 32-
bit registers. Both the forward and reverse key scheduling are
done in the same device. The ByteSub required in the key
expansion unit is implemented using the S-Boxes. Four S-
Boxes are needed for a 128-bit key and 128-bit data block
implemented using 8× 256 ROM cells. Multiplexers are used
as a control signal to distinguish between the initial key and
the round key (obtained from the initial key using a “key
expansion unit”). The least significant 32 bits of the 128-bit
key is cyclically shifted to the left by a byte, implemented
using combinational logic. The resulting word after the left
shift operation is sent through the S-boxes and the affine
mapping operation, in order to perform ByteSub. The key
resulting from the ByteSub is XORed with the Round Constant
(RCON). In this architecture, the round constant is generated
using the combinational logic. The round constant should be
symmetric with the round key being generated.

Encryption

Decryption

round constant

enc_decenc_decenc_dec

Round Key 0 Round Key 1 Round Key 2 Round Key 3

Register 0 Register 1 Register 2 Register 3

MUX MUX MUXMUX

initialkey0 initialkey1 initialkey2 initialkey3

MUX

leftshift

S−box

32 32 32 32

128

M
U
X

M
U
X

M
U
X

Feedback

initial_norrmal initial_norrmal initial_norrmal initial_norrmal

enc_dec

Fig. 5. Architecture for Key Scheduling Unit

The total number of round constants that need to be gener-
ated is equal to the number of rounds. The round constant
is obtained in real-time by multiplying the previous round
constant by X. This is amenable for implementation in the
hardware using XOR operations. For the reverse key schedul-
ing, the last round key should be generated with forward key
scheduling for the first time. The last round key is expanded
to generate the reverse round keys. Decryption requires more
cycles than encryption because it needs pre-scheduling to

generate the last key value. Since the Rijndael algorithm allows
different key lengths and block lengths, each round key is
carefully set to have the same length as the data block. In
the case where key length and the block length are not equal,
previous, current and also the next round keys are needed in
order to generate the appropriate set of round keys that are
fed into the encryption module, which is performed by a “key
alignment unit”.

IV. A PROPOTYPE CHIP IMPLEMENTATION FOR RIJNDAEL

We now present the methodology used to design, simulate,
and verify the proposed architecture.

A. Implementation Analysis

It is evident that the Rijndael’s S-Boxes are the dominant
element of the round function in terms of required logic
resources. Each Rijndael round requires sixteen copies of
the S-Boxes, each of which is an 8-bit×8-bit look-up-table,
requiring more hardware resources. However, the remaining
components of the Rijndael round function – byte swapping,
constant multiplication by an element of Galois Field , and key
addition – were found to be simpler in structure, resulting in
these elements of the round function requiring fewer hardware
resources. Additionally, it was found that the synthesis tools
could not minimize the overall size of a Rijndael round
sufficiently to allow for a fully unrolled or fully pipelined
implementation of the entire ten rounds of the algorithm within
the target FPGA [10]. Partially pipelined implementation with
one sub-pipeline stage provided one area-optimized solution.
As compared to a one-stage implementation with no sub-
pipelining, the addition of a sub-pipeline stage afforded the
synthesis tool greater flexibility in its optimizations, resulting
in a more area efficient implementation. The 2-stage loop
unrolling was found to yield the highest throughput when
operating in FeedBack (FB) mode.

B. Memory Optimization

Since the design is based on one clock cycle for each
encryption round, the memory modules had to be duplicated.
For example, in the ByteSub, the S-boxes need to be duplicated
16 times. Consequently, the choice of memory architecture is
very critical. Since all the table entries are fixed and defined
in the standard, the usage of ROM is preferred. Specifically,
the architecture requires several small ROM modules instead
of one large module, since each lookup will only be based on
a maximum of 8-bit address, which translates to 256 entries.
We implemented the multiplicative inverse function using the
look-up table of size 8× 256. We have a total of 20 copies of
the S-boxes in our design; 16 of them in encryption module
and 4 in the key scheduling module.

C. Design Flow

The proposed architecture was implemented using the CA-
DENCE virtuoso layout design tool. The method adopted was
a custom designed at the transistor level based on a custom cell
library of 0.35µ CMOS primitive standard cells. A hierarchical

TABLE I
COMPONENTS OF THE AES-128 MODULE

Module/Component Number of Components Mangard et. al.
Proposed Architecture Architectutre [7]

DATA UNIT
S-Boxes 16 16

32-bit Registers using D-cells 8 16
Multiplexers 240 384

32-bit Multiplexers 180 NA
128-bit Multiplexers 60 NA

Multipliers 0 16
KEY UNIT

S-Boxes 4 NA
32-bit Registers using D-cells 4 NA

32-bit Multiplexers 4 NA

TABLE II
SUMMARY OF THE PERFORMANCE OF THE AES-128 MODULE

Architecture Clock cycles Throughput [Mbps]
Proposed Architecture 11 232

Mangard et. al. [7]-Standard 64 128
Mangard et. al. [7]-High Performance 34 241

approach was followed in the implementation. The layout
for each module was generated and later integrated to obtain
the final chip. The generated netlist was then simulated with
HSPICE using the MOSIS CMOS model. Once the creation
of layout design is finished, the I/O pins have to be added to
the circuit. The design layouts of different architectural units
are shown in the Fig. 6.

(a) Multiplicative Inverse (b) Affine Mapping (c) Round Constants

Fig. 6. Layout of Different Architectural Units

D. Performance Evaluation

An AES-128 encryption / decryption of a 128-bit block was
done in 11 clock cycles using the feedback logic. In each clock
cycle, one transformation is executed and, at the same time,
the appropriate key for the next round is calculated. The whole
process concludes after 10 rounds of transformations. The
analysis of the components used for the proposed architecture
is shown in the Table I. The architecture proposed by Mangard
et. al. [7] uses multipliers for the implementation of the
MixColumn, while ours uses XOR, multiplexors, inverters
etc. to reduce the complexity. Kuo et. al. [4] uses lookup
table for the implementation of the shift row module and for
the generation of the round constants in the key scheduling
module, but we used the combinational logic instead of the
look-up tables, thus reducing the area.

The frequency of the external clock with which the
architecture operates was 20MHz; the critical delay be-
ing 50ns. The throughput is calculated as: Through-

put =
(block size∗clock frequency

total clock cycles

)
=

(
128∗20MHz

11

)
=

232.7Mbps, [where, clock frequency = 1 / clock period for
the critical path]. When the pipelining technique is used
instead of the iterative feedback logic, the standard rounds are
duplicated for Nr times cascaded by the pipelining registers.
This increases the effective area. At a particular clock cycle,
Nr blocks of data can be encrypted or decrypted using the
pipelining technique. Based on the critical path obtained using
our implementation, the throughput achieved with pipelining
can be calculated as: Throughput =

(
block size
total delay

)
= 128

70ns

= 1.83Gbps, [where, total delay is the delay of the single
round including the delays caused by the pipelined registers].
The summary of the performance in the Table II shows that
our proposed architecture minimizes the needed number of
clock cycles and achieves high throughput.

V. DISCUSSIONS AND CONCLUSIONS

We have presented a VLSI architecture for the Rijndael AES
algorithm that performs both the encryption and decryption.
S-boxes are used for the implementation of the multiplicative
inverses and shared between encryption and decryption. The
round keys needed for each round of the implementation are
generated in real-time. The forward and reverse key scheduling
is implemented on the same device, thus allowing efficient
area minimization. Although the algorithm is symmetrical, the
hardware required is not, with the encryption algorithm being
less complex than the decryption algorithm. The implementa-
tion of the key unit in the proposed architecture, can be scaled
for the keys of length 192 and 256 bits easily.

REFERENCES

[1] S. P. Mohanty, K. R. Ramakrishnan, and M. S. Kankanhalli, “A DCT
Domain Visible Watermarking Technique for Images,” in Proc of the
IEEE International Conf on Multimedia and Expo, 2000, pp. 1029–1032.

[2] M. S. Kankanhalli and T. T. Guan, “Compressed-Domain Scrambler
/ Descrambler for Digital Video,” IEEE Transactions on Consumer
Electronics, vol. 48, no. 2, pp. 356–365, May 2002.

[3] B. M. Macq and J. J. Quisquater, “Cryptography for Digital TV
Broadcasting,” Proceedings of the IEEE, vol. 83, no. 6, pp. 944–957,
Jun 1995.

[4] H. Kuo and I. Verbauwhede, “Architectural Optimization for a 1.82
Gbits/sec VLSI Implementation of the AES Rijndael Algorithm,” in
Proceedings of the Workshop on Cryptographic Hardware and Embed-
ded Systems, 2001, vol. 2162, pp. 51–64.

[5] M. McLoone and J. V. McCanny, “Rijndael FPGA Implementation
Utilizing Look-up Tables,” in Proceedings of the IEEE Workshop on
Signal Processing Systems, 2001, pp. 349–360.

[6] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A Compact Rijndael
Hardware Architecture with S-Box Optimization,” in Proceedings of
Advances in Cryptology - ASIACRYPT 2001, 2001, pp. 171–184.

[7] S. Mangard, M. Aigner, and S. Dominikus, “A Highly Regular
and Scalable AES Hardware Architecture,” IEEE Transactions on
Computers, vol. 52, no. 4, pp. 483–491, April 2003.

[8] T. Sodon O. J. Hernandez and M. Adel, “Low-Cost Advanced En-
cryption Standard (AES) VLSI Architecture: A Minimalist Bit-Serial
Approach,” in Proc of IEEE Southeast Conference, 2005, pp. 121–125.

[9] J. Daemen and V. Rijmen, The Design of Rijndael, Springer-Verlag,
2002.

[10] A. J. Elbirt, W. Yip, B. Chetwynd, and Christof Paar, “An FPGA
Implementation and Performance Evaluation of the AES Block Cipher
Candidate Algorithm Finalists,” in Proceedings of the Third Advanced
Encryption Standard (AES) Candidate Conference, 2000, pp. 13–27.

