A Hardware Assisted High Performance PHK Memory Manager

Wentong Li

Saraju P. Mohanty

Krishna Kavi

Email-ID: wl@cse.unt.edu Email-ID: smohanty @cse.unt.edu Email-ID: kavi@cse.unt.edu
Dept. of Computer Science and Engineering, University of North Texas, Denton, TX 76203.

Abstract

Complex mechanisms for dynamic memory manage-
ment and garbage collection are needed in modern imper-
ative programming languages. Implementation of memory
management functions efficiently both in terms of memory
usage and execution performance becomes important for
programs written in such languages. In this paper, we in-
troduce a memory allocator that uses hardware assistance
to improve the performance of a existing software allocator
(PHK allocator). On average, our design reduces the exe-
cution time of memory management functions by 58.9%.

1 Introduction and Our Contribution

Significant amounts of execution time in modern im-
perative languages like C++/JAVA is spent on dynamic
memory management. Memory management functions are
performed by pure software in current systems. In some
applications, the amount of execution time spent on mem-
ory management is as much as 42% [1]. Thus, there is a
need for implementation of a low cost allocator, which has
both good execution performance and memory locality in
order to build efficient systems for memory intensive appli-
cations.

Software allocators search through lists of free mem-
ory chunks during allocation, and the search is in the criti-
cal path of allocator performance. Hardware allocators can
perform parallel search through the lists of available mem-
ory. Moreover a hardware allocator can easily hide the exe-
cution latency of freeing objects, since freeing can run con-
currently with application execution. A hardware allocator
can coalesce free chunks of memory, in the background,
while the application is not using that portion of the mem-
ory. Hardware units can also perform garbage collection in
the background. The major disadvantages of a hardware-
only allocator are the hardware complexity in implement-
ing complex allocators and the lack of flexibility in chang-
ing allocation strategies.

In this paper, we show a new software/hardware co-
design. Our design is based on the PHK [2] allocation
method used in the Free-BSD system and Chang’s hard-
ware allocator [3]. We aim to balance the hardware com-

plexity with performance by using both hardware and soft-
ware. To prove our claims, we present a comparison
of our design in terms of hardware complexity with a
hardware-only allocator and a comparison in terms of per-
formance with a software-only allocator. We have pro-
totyped the hardware components using FPGA. Our pro-
posed hardware-software allocator can find important uses
in the applications written in programming languages like
C++/JAVA where a significant amount of time is spent in
memory management.

The rest of paper is organized as follows. We sum-
marize the background and related research in Section
2; present the proposed software-hardware co-design dy-
namic allocator and its FPGA prototype in Section 3; com-
pare our design with existing hardware only and software
only allocators in Section 4; and present our conclusions in
Section 5.

2 Background and Related Research

Our research deals with memory allocators, and thus
we will briefly introduce both available software-only allo-
cators and hardware-only allocators in this section.

There are two most popular open source software al-
locators, Doug Lea [4] used in LINUX system and PHK
used in Free-BSD system. Berger et. al., [1] have shown
that general purpose allocators such as the one by Doug
Lea [4], or PHK [2] work well across a wide range applica-
tions. Feng et. al, [5] show that the performance difference
between these two general purpose allocators for four most
memory allocation intensive benchmarks in SPEC 2000
suite [12] is less than 3%. Thus if one were to implement
memory allocators in hardware, one should consider one of
these two general-purpose allocators.

There are a few hardware allocator designs [3] [6] [7]
reported. All of these are based on the buddy system in-
vented by Knuth [8]. None of them have found practical or
commercial acceptance due to the excessive hardware com-
plexity. All these allocators target embedded applications,
where only physical addresses are used. This can be very
limiting in most general-purpose systems that use virtual
addresses.

To take advantage of the speed of a hardware-only al-

locator and the higher object localities of a general-purpose
software-only allocator, we design a hybrid allocator. Our
hardware portion of the design is based on Chang’s hard-
ware and our software portion of the design is based on the
PHK allocator, thus making our design suitable for general-
purpose computing environments.

3 The Proposed Software-Hardware Hybrid
Allocator

The PHK allocator is a page based allocator, in which
each page can only contain objects of one size. Alloca-
tion requests for different sized objects will be satisfied by
using multiple pages. For large objects, sufficient number
of pages are allocated to accommodate the object. For ap-
plications written using object-oriented languages such as
Java and C++, most allocated objects are small. For small
objects (less than half a page), object size is padded to the
nearest power of 2, to match the size of objects in that page.
The allocator keeps a page directory for all the allocated
pages. At the beginning of each page, a bitmap is main-
tained to track allocation within that page. When allocating
a small object, the PHK allocator perform a linear search on
the bitmap for the first available chunk in that page. This
search is performed in the following sequence: first locate
the first word in the bitmap that has a free chunk, then lo-
cate the first byte in that word that represents a free chunk.

We compare our design with Chang’s hardware allo-
cator design [3] as we do not have access to detailed hard-
ware designs for the other allocators cited above. Chang
uses a first-fit allocation policy based on a binary OR-tree
and a binary AND-tree. Each leaf node of the OR-tree rep-
resents the size of the smallest unit of memory that can
be allocated, and other nodes provide information if such
a unit is available. All allocated objects are multiples of
the base size. The leaves of the OR-tree together repre-
sent the entire memory that is managed. The input of the
AND-tree is generated by a complex interconnection net-
work of the OR-tree. The AND-tree has the same number
of leaves as the OR-tree. The AND-tree is used to gen-
erate the address of the first available chunk for a particu-
lar sized object. The interconnection between the OR-tree
and the AND-tree is the most complex part of Chang’s de-
sign. The interconnection has the same critical path delay
as the OR-tree and the AND-tree. The final allocation re-
sult is produced by the output of the AND-tree through a
set of multiplexers. The critical path (CP) delay, in term of
gate delays, of this algorithm can be expressed as follows:
DCP = DOR—trae + Dlnterconnection + DAND—tree-
The hardware complexity, in terms of the number of gates,
is O (nlgn), where n is the number of memory chunks,
which depends on the size of the memory managed, and
O (Inn) is the critical path delay.

We note that pure hardware allocators based on buddy

system are not scalable since the complexity of the hard-
ware increases with the size of the memory managed. Also
buddy system is known for its poor object locality [9]. The
PHK algorithm provides better object localities than the
buddy system, but software allocators have the problem of
poor execution performance. Hence our design that uses
hardware assistance to improve the performance of PHK
allocator.

The software in our allocator is responsible for cre-
ating page indexes and for initializing the page header as
in a software implementation of PHK. For large objects
(larger than half a page), the software takes full responsibil-
ity without any hardware assistance. When an application
requests allocation for a small sized object, the software
portion of our hybrid system will locate the bitmap and is-
sues a search request to the hardware. The hardware por-
tion in our allocator will search the page index (or bitmap)
in parallel to find a free chunk, and mark the bitmap to in-
dicate an allocation. This co-design allocator can be fully
compatible with current multitasking operating system.

Bit-Flippers DEMUX

Figure 1: Block Diagram of Our Proposed Hardware Com-
ponent (For Page Size 4096 bytes and Object Size 16 bytes)

Figure 1 shows the block diagram of the hardware
we use for parallel searching. We have an OR-tree and
an AND-tree similar to Chang’s design [3]. The OR-tree
is responsible for determining if there is a free chunk in a
page. The AND-tree will locate the position of the first free
chunk in the page. Because an OR-tree and an AND-tree
are dedicated to one object size, the complex interconnec-
tions between the OR-tree and the AND-tree are not needed
(unlike Chang’s [3]). The individual implementation of the
OR-tree and the AND-tree are identical to those of Chang’s
designs. The multiplexer (MUX) uses the opcode to select
the address of the bit needed to be flipped. If the opcode is
“alloc”, the address from the AND-tree will be chosen. If
the opcode is “free”, the address from the request will be
selected. D-latches in our design are used as storage de-
vices, where the bitmap will be loaded from the page being
searched for allocation. The de-multiplexer (DEMUX) is
used to decode the address from the MUX. Bit-flippers use
the decoded address and the opcode to determine how to
flip a desired bit. Because of the page limits, we will not

show the details of the flipper logic here. It may be noted
that the critical path in this design is only the AND-tree for
the “allocate” operation. The “free” doesn’t generate any
output, and the processor can immediately continue execu-
tion of application code.

Input Opcode

Size j{ Unit for 16 bytes objects]47
R
M . .
Unit for 32 bytes objects

U .

X 4{ Unit for quarter page objects]47
~———
Unit for half a page objects]47

Figure 2: The Block Diagram of Overall Hardware

Figure 2 shows the overall design of our system with
4096-byte pages. We have shown one unit for one page in
Figure 1. For different object sizes, the hardware needed to
support the bit-map will be different. In our design, we pre-
select object sizes from 16-bytes to 2048 bytes and include
hardware to support pages for these objects. It should be
noted that the larger the object size the smaller the amount
of hardware needed to support the bit-maps indicating the
availability of chunks in that page. For example, we need
only 2 bits for a page that allocates 2048-byte objects (in a
4096 byte page). The MUX here is used to select the hard-
ware unit that will be responsible for supporting objects of
a given size. With 4096-byte pages, we have 8 different
sized objects ranging from 16-bytes to 2048-bytes (and 8
hardware units in our design). For allocating 16-byte ob-
jects, we need trees with 256 leaves. Each tree only needs
255 AND/OR gates. For the overall system including all
object sizes, we need 502 AND gates and 502 OR gates.
This is very small amount of hardware compared with bil-
lions of transistors available on modern processor chips.

4 Experimental Results

Our hybrid allocator presented in the previous section
has much lower hardware complexity than hardware-only
allocators. At the same time our hybrid allocator improves
execution performance of software-only allocators. In this
section, we compare the hardware complexity of our design
with Chang’s allocator, and the performance with software-
only PHK allocator.

4.1 Complexity Comparison

Existing hardware allocator designs implement the
buddy system of allocations. The amount of hardware that

is used to implement a buddy system based allocator is pro-
portional to the size of the total memory [3] [7]. Thus, the
buddy system based allocators are not scalable. Our design
has much lower hardware complexity than Chang’s alloca-
tor. In order to compare hardware complexity, the follow-
ing notations are used: M is the total memory size, P is the
page size, and S is the smallest allocated object size. Table
1 shows details of the comparison with Chang’s algorithm.

Table 1: Comparison of Chang’s Allocator and Our Design

. Chang’s Our
Attribut

ributes Allocator Allocator
Algorithm Total Page
Design Memory Based
Interconnection M1 M Interconnection

: O(%le%)
Complexity Not needed
Overall Hardware
O (Mg M o(E

complexity (s 8%) (S)
Scalability No Yes
Need for Software

. No yes
Assistance
Critical Path Delay | O (g %) O (lg%)
Clock Frequency Slow Fast
Allocation Locality Poor Better
POSIX Compatible No Yes
C?mpatlble with No Yes
Virtual Address

The complex interconnection determines the hard-
ware complexity of Chang’s allocator and it grows as
0] (% lg %) The hardware complexity of our design is
O (£). Normally, the page size is small and in most
cases pages are of fixed size. For example, in a 2GByte
memory system where the smallest object allocated is 16-
bytes, Chang’s allocator needs several hundred million
gates, while our design only needs twenty thousand gates
when 4096-byte pages are used.

The critical path delay of our design is much less than
that of Chang’s design. For Chang’s allocator, the critical
path delay is O (Ig %) which grows with the size of the
memory managed. For our design, the critical path delay is
0] (lg g) For a system as previously described, the height
of the trees in Chang’s algorithm 27. The total critical path
delay will be 108 logic gate delays. For our approach, the
critical path incurs only 16 gate delays. Moreover, our pro-
posed allocator can be run at much higher clock frequency
than Chang’s allocator, although it needs software assis-
tance.

When freeing an object, Chang’s algorithm needs the
size of the object to correctly manipulate the AND and OR
trees. In POSIX standard, “free” command does not pro-
vide object sizes; only the starting address of the object to

be freed. This incompatibility makes Chang’s approach im-
practical. Since the software part in our design will locate
the bitmap on free, our design is fully POSIX compatible.
Another incompatibility results from the use of physical
memory addresses by Chang’s design, while most general-
purpose systems use virtual memory addresses. Since we
rely on the software portion of a PHK allocator to inter-
face with applications, our design is compatible with vir-
tual memory based systems.

Compared Chang’s design which is based on Buddy
systems that is known for very poor memory usage and
poor object localities, our design which is based on PHK,
provides better object localities and better memory usage.
It should be noted that there is a buddy allocator called
Address-Ordered buddy system [10] that results in better
object localities than conventional Buddy systems used by
Chang.

4.2 Allocator Performance Analysis

For the purpose of analyzing the performance gains
from our design, we simulated the existence of a hardware-
assisted PHK allocator within a conventional CPU using
SimpleScalar simulation tool set [11]. Because this hard-
ware is very simple, we assume the hardware portion of our
allocator presented in Section 3 runs at the same clock fre-
quency as the CPU. For the purpose of analysis this hard-
ware is implemented as a special functional unit in a su-
perscalar processor. This unit is activated by operations,
find_chunk and free_chunk. The page size of the system is
assumed to be 4096 bytes, and the smallest object allocated
is set to 16 bytes. The detailed processor parameters used
in our simulations are shown in Table 2.

We have used ten benchmarks (with varying num-
ber of memory management overheads) to study the per-
formance gains using our design: parser and perlbmk are
from SPEC CPU2000 suite; cfrac, espresso and boxed-sim
are memory intensive benchmarks that are widely used by
researchers; the other benchmarks are from Olden suite,
which are also memory allocation intensive. The inputs to
these benchmarks, average object sizes, and percentage of
execution time spent in memory management by software
allocators are shown in Table 3. The simulation results are
shown in Table 4.

The speedup of each application is proportional to the
execution time spent on memory management and the av-
erage object size. In Figure 3, we show the reduced mem-
ory management execution cycles normalized to the origi-
nal execution cycles spent on memory management func-
tions by software only allocator. This figure shows the rel-
ative performance improvements for memory management
functions. The cfrac application shows the most perfor-
mance improvement. The average object size in cfrac is 8
bytes, which means that most pages allocated contain 256
objects, since the smallest size of allocation is 16 bytes.

Table 2: Simulation Parameters

Pipeline Parameters
Issue Width 4

Int: 4 ALU, 1 Mult/Div,
Float: 4 ALU, 1 Mult/Div,

Functional Units

2 Memory Ports
Register Update Units 8
Load/Store Queue Size 4
Branch Predictor Bimodal

Memory Parameters

4— Associati
L1 Data Cache way Set Associative,

16K Bytes
Direct-
L1 Instruction Cache irect-mapped,
16K Bytes
4— Set Associati
L2 Unified Cache way Set Assoclative.
256K Bytes
Cache Line Size 32 Bytes
L1 Hit Time 1 cycles
L1 Miss Penalty 6 cycles
Mem Latency/Delay 18/2 cycles

The linear search of the bitmaps using software for that
many objects will be slow. The hardware in our design
speeds up the search, leading to 76.2% normalized perfor-
mance improvement over the software-only allocation. The
benchmark espresso shows the least amount of improve-
ment using hardware-assistance. The average object size in
espresso is 250 bytes. Thus, pages allocated for this bench-
mark contain fewer than 20 objects. Linear search of 20 ob-
jects is not as significant, and the use of hardware in our de-
sign only shows 48.0% normalized performance improve-
ment. The other benchmarks have average object sizes of
16 bytes to 48 bytes, and thus the performance gains are

Table 3: Percentage time spent in Selected Benchmarks for
different (Average) Object Sizes

Benchmarks Input Object Size (%) Time S'pent
on Alloction
cfrac 22-digits number 8 bytes 29.7
espresso largest.espresso 250 bytes 4.7
boxed-sim -n10-s 1 24 bytes 2.4
parser ref.in (first 300 lines) 16 bytes 35.6
perlbmk perfect.pl b 2 38 bytes 10.7
treeadd 201 24 bytes 48.2
voronoi 20000 1 40 bytes 10.4
bisort 250000 1 24 bytes 2.3
perimeter 121 48 bytes 16.3
health 55001 24 bytes 49

Table 4: Performance Comparison with PHK Allocator

PHK Our Design
Benchmarks Execution Execution Speedup

Cycles Cycles

(in million) | (in million)

cfrac 189.7 148.1 1.28
espresso 5,241 5,129 1.02
boxed-sim 9,043 8,922 1.01
parser 27,111 21,363 1.27
perlbmk 135.5 127.3 1.06
treeadd 160.4 112.4 1.43
Voronoi 128.8 122.3 1.05
bisort 424.1 418.1 1.01
perimeter 42.11 37.97 1.11
health 383.0 372.2 1.03

not as significant as that for cfrac, but better than that for
espresso. On average, our co-design reduces the memory
management time by 58.9%. The average overall execution
speedup of our design when compared to a software only
allocator implementation is 1.127 (or 12.7%) for these ten
memory management intensive benchmarks.

In summary, our design presented in the previous sec-
tion has much lower hardware complexity than the existing
hardware designs; and our design improves execution per-
formance of software allocators.

4.3 FPGA Prototyping

In order to demonstrate the feasibility of the proposed
hybrid allocator we performed its FPGA prototyping. The
hardware component of our co-designed allocator is pro-
totyped using VHDL on the Xilinx ISE 7.1i and the func-
tional and timing simulations are carried out using Mod-
elsim XE III tools. The target device in the simulation is
the VIRTEX II xc2vp2 FPGA processor. Figure 4 shows
the RTL schematic generated by the ISE tool. Figure 5
shows the functional simulation waveforms generated by
the Modelsim. In addition, the summary of the synthesis
results are show in Table 5.

5 Conclusions and Future Works

In this paper, we described a hybrid software-
hardware memory allocator based on the PHK and Chang’s
designs. We have included a FPGA prototype of the hard-
ware portion of our design. Compared to hardware-only
allocators that are typically based on buddy system, our de-
sign has significantly lower hardware complexity and lower

0.8 |- B

B omBa o EaE

04 g

Percetage of Performance gain(%)

0.2 B

cfrac espressoboxed-sim parser perlbmk treeadd voronoi bisort perimeter health

Figure 3: Normalized Memory Management Performance
Improvement

Table 5: Synthesis Summary

Minimum period 20.13ns
Maximum frequency | 49.677 MHZ
Cell usage (BELS) 2214
No. of I0s 21
LUTs usage 6%

critical path delays. Our hardware design has a fixed hard-
ware complexity, complexity being dependent on the size
of a memory page, and not the total (user) memory being
managed. In addition, our design is fully compatible with
the modern operating systems. Since our design is based
on PHK algorithm, we are likely to achieve better object
localities than buddy system based designs.

We also have shown that our hardware-software allo-
cator achieves 12.7% improvement in the overall execution
performance over software-only allocator implementation
for memory intensive benchmarks and improves the mem-
ory management efficiency by 58.9% (that is the execution
performance improvement for memory management func-
tions). The performance gains depend on how often an ap-
plication invokes “malloc” or “free” functions, and the av-
erage size of objects allocated. Our design shows higher
performance gains for applications that use small objects.

In the future, we will explore variable sized pages
such that the number of allocated objects are the same in
each page. In this case, all the bitmaps will have the same
number of bits. Thus, we need only one pair of AND-tree
and OR-tree in our design. This will further reduce the
hardware complexity. We expect that this will also improve
the memory management efficiency of allocators for large
objects. We also plan to investigate hybrid designs for other

input_addr(7:0)>
opcode(1:0)>

input(255:0) output(7:0) inputl(7:0) output(7:0)

input2(7:0)

sel(7:0)

en

output(255:0) —-l

opcode(1:0)

(255:0) —J

——op(10)

input(255:0) output

€l(255:0)

clock

reset)

reset

na(255:0)

clock)

output_addr(7:0

Figure 4: RTL Synthesized by ISE

T wave - default

1

e

4 jaZSE vhddinputa. [oonoaol
- 0

Figure 5: Modelsim Simulated Waveform

memory management algorithm’s like that of Doug Lea.
For example, hardware may be used to assist in tracking
quick-lists used in Doug Lea’s method.

References

(1]

(2]

(3]

(4]

(5]

(6]

E. D. Berger, B. G. Zorn and K. S. McKinley, “Recon-
sidering custom memory allocation”, in Proc. of the
Conference on Object-Oriented Programming Sys-
tems, Languages and Applications, 2002, pp. 1-12.

P. H. Kamp. “Malloc(3) revisited”, http://phk.
freebsd.dk/pubs/malloc.pdf.

J. M. Chang and E. F. Gehringer, “A High-
Performance Memory Allocator for Object-oriented
Systems”, IEEE Transactions on Computers, Vol. 45,
No. 3, 1996, pp. 357-366.

D. Lea, “A Memory Allocator”, http://gee.cs.
oswego.edu/dl/html/malloc.html

Y. Feng and E. D. Berger, “A locality-improving dy-
namic memory allocator”, in Proceedings of the 2005
workshop on Memory System Performance (MSP
2005), Chicago, USA, 2005, pp. 68-77.

H. Cam, et. al., “A High Performance Hardware Ef-
ficient Memory Allocator Technique and Design”, in

(7]

(8]

(9]

[10]

[11]

[12]

Proceedings of the International Conference on Com-
puter Design, Austin, USA, 1999, pp. 274-276.

S. Donahue, M. Hanpton, R. Cytron, M. Franklin and
K. Kavi, “Hardware support for fast and bounded-
time storage allocation”, in Proceedings of the Second
Workshop on Memory Performance Issues (WMPI
2002), Anchorage, USA, 2002.

D. E. Knuth, The Art of Computer Programming Vol.
I: Fundamental Algorithms, Addison-Wesley, 1968.

M. S. Johnstone and P. R. Wilson, “The memory frag-
mentation problem: Solved”, in Proceedings of the
First International Symposium on Memory Manage-
ment (ISMM’98), volume 34(3) of ACM SIGPLAN
Notices, Vancouver, Canada, 1998, 26-36.

D. C. Defoe, S. R. Cholleti, and R. K. Cytron, “Upper
bound for defragmenting buddy heaps”, in Proc. of
the Conference on Languages, Compilers, and Tools
for Embedded Systems, 2005, 222-229.

D. Burger and T. M. Austin, “The SimpleScalar Tool
Set, version 2.0”, Technical Report CS-1342, Univer-
sity of Wisconsin-Madison, June, 1997.

“SPEC CPU2000 V1.37,
org/osg/cpu2000.

http://www.spec.

