
A CONGESTION DRIVEN PLACEMENT ALGORITHM FOR FPGA SYNTHESIS

Yue Zhuo, Hao Li and Saraju P. Mohanty

Department of Computer Science and Engineering
University of North Texas

P.O.Box 311366, Denton, Texas 76203
email: {yz0051, hli, smohanty}@unt.edu

ABSTRACT

We introduce a new congestion driven placement algorithm
for FPGAs in which the overlapping effect of bounding boxes
is taken into consideration. Experimental results show that
compared with the linear congestion method [1] used in
the state-of-the-art FPGA place and route package VPR [2],
our algorithm achieves channel width reduction on 70% of
the 20 largest MCNC benchmark circuits (10.1% on aver-
age) while keeping the channel width of the remaining 30%
benchmarks unchanged. A distinct feature of our algorithm
is that the critical path delay is not elongated on average, and
in most cases reduced.

1. INTRODUCTION

Field programmable gate arrays (FPGAs) have gained rapid
commercial acceptance recently, but the area efficiency and
performance are still their drawbacks and are needed to be
optimized. Area of an FPGA includes routing area and logic
area. Unlike an application specific integrated circuit (ASIC),
most of the chip area of an FPGA (often 80%-90% [3]) is
dedicated to the routing resources. Thus, reducing routing
tracks in an FPGA will effectively reduce the whole FPGA
area. The research proposed in this paper is a contribution
in this direction.

To improve an FPGA’s area-efficiency, Marquardt et al. [4]
tried to simultaneously examine both the area-efficiency and
the speed of FPGAs using different logic cluster sizes. In
[5], the authors claimed that having wires of 4 to 8 logic
blocks long for an FPGA will optimize speed and density.
Routability is an issue closely related to FPGA area effi-
ciency. RPack [6] improves the routability by incorporating
several routability factors into the packing algorithm. It can
be also integrated into timing-based T-VPack to implement
a new clustering algorithm called T-RPack. In [7], Schlag et
al. presented a program, called Rmap, which provided the
capability to trade off between routability and compactness
of a design. Parthasarathy et al. [8] utilized Rent’s rule to
analyze and estimate the routability of a placement.

Due to increasing complexities in current VLSI designs,
more and more attention has been paid to circuit conges-
tion. In [9], the authors presented an indirect congestion
minimization method by correlating wirelength with con-
gestion. The work in [10] tried to reduce congestion and
wirelength by utilizing a fast global router and hierarchical
area density control. In addition to these approaches, there
is a non-linear congestion method implemented in Versatile
Place and Route (VPR) which adjusts the placement accord-
ing to the given maximum channel width. Compared to the
linear method, on a 4 x 4 grid, the non-linear approach takes
5X CPU time to find a placement [1]. Unlike the linear ap-
proach, this method cannot generate the final placement in
one pass of the simulated annealing process. Instead it uses
a binary search method. If it takes 6 attempts to find the
minimum channel width, placement and routing processes
will be called 6 times as well. Assume the linear congestion
method needs Pl time in placement and Rl time in routing.
The total time for the non-linear one is about 30 Pl + Rl,
which is apparently more time consuming. However, it only
achieves 1% reduction in the channel width [1].

Our contribution in this paper is to present a congestion
driven placement approach which considers the overlapping
among various nets. By introducing a cost function which
quantifies this mutual influence, we place the circuit more
evenly and hence reduce the routing tracks. Moreover, our
approach does not cause any increase in delay (or decrease
in performance).

The rest of this paper is organized as follows: In section 2,
we review the placement algorithms used by VPR and then
propose our placement algorithm. In section 3, we present
the experimental results. In section 4, we draw the conclu-
sions and discuss future research.

2. OUR PROPOSED CONGESTION DRIVEN
APPROACH

T-VPlace [11] is the simulated annealing based placement
algorithm used in VPR, the most widely used academic place-



21 22

1 1 22 33

1 1 22 33

21 22

(a)

1 1 1 1

1 1 1 1

1 1 11 12

2 2 12 23

1 1 11 22

111

(b)

Fig. 1: A Circuit with Three Overlapping Bounding Boxes:
a) Placement may result in a congested routing. b) Place-
ment leads to a balanced routing. Our goal is to achieve (b).

ment, routing, and architecture exploration system for FPGAs.
T-VPlace considers two types of costs, namely timing cost
and bounding box cost. The following function [1] is used
to estimate the bounding box cost.

WiringCost =

Nnets
∑

i=1

q[i](bbx(i) + bby(i)), (1)

where Nnets is the total number of nets in the circuit. For
each net, i, bbx(i) is its horizontal span, and bby(i) is its ver-
tical span. The q(i) factor compensates for the fact that the
bounding box wire length model underestimates the wiring
necessary to connect nets with more than three terminals [12].

It is clear from the above analysis that the mutual interac-
tions of different nets are not taken into account by VPR’s
linear congestion method. In the following subsections, we
discuss our algorithm which overcomes this drawback.

2.1. Congestion Coefficient

To reduce the routing channel width, a placement algorithm
has to pay attention to both the resource consumed by each
net, and the interaction (congestion) among different nets.
For example, if all nets are restricted to a relatively small
fraction of area on the chip, the routing track demand will
probably be very high in this region. Although CLBs in
other regions on the chip may be easily routed with a small
channel width, the overall channel width is determined by
the channel that uses the maximum number of tracks if all
channels are of the same width.

In our proposed algorithm, we formulated a new bound-
ing box cost function. The final bounding box cost is now
computed by multiplying the previous WiringCost with
our congestion coefficient CC (defined below).

We first introduce the congestion model used in our algo-
rithm. Assume a circuit consisting of 3 nets is to be placed.
An intermediate placement during the simulated annealing
process is shown in Figure 1(a). The 3 bounding boxes are
shown by different rectangles. The number in each CLB in-
dicates how many bounding boxes are covering this CLB at
this moment. A CLB without a label is not covered by any
bounding box. For example, a CLB with label 2 means it is
covered by the bounding boxes of two nets. Since every net
will probably need some routing tracks around the CLBs it
covers, the regions covered by more bounding boxes would
require more routing resources. In Figure 1(a), the CLBs
with label 3 are very likely to be the bottleneck to reduce
channel width. Another placement shown in Figure 1(b)
provides a better solution even though the dimension of each
bounding box remains unchanged.

The following formula is used in our proposed algorithm
to compute the congestion coefficient factor for a placement,

CC =

(

∑

i,j U2

i,j

nx · ny

/(

∑

i,j Ui,j

nx · ny

)

2)k

,

1 ≤ i ≤ nx, 1 ≤ j ≤ ny, (2)

where Ui,j is the number of bounding boxes covering CLBi,j ,
k is a small positive integer (explained in section 2.2), and
the whole chip consists of nx by ny CLBs. As we know, for
n positive numbers a1, a2, . . . , an, the following inequality
∑n

i=1
a2

i /n ≥ (
∑n

i=1
ai/n)

2 is always true. So, CC is al-
ways equal to or greater than 1. In Equation (2), if

∑

Ui,j

remains constant, CC is determined only by
∑

U2

i,j . A bal-
anced set of Ui,j will give a small CC. So the value of CC
shows how congested the whole placement is expected to
be. When it is close to 1, the placement is balanced. If it is
much greater than 1, the placement is considered congested.

2.2. Exponent Attenuation Method

During the process of simulated annealing in VPR, the max-
imum radius to swap two blocks decreases gradually. In
the beginning, the radius equals the entire chip size, called
rMax. For example, if there are N x N CLBs on a chip,
the initial radius will be N . As the temperature cools down,
the swap radius becomes smaller and finally reaches 1. We
can consider the earlier period in simulated annealing as a
coarse-grain or global adjustment and the later period as a
fine-grain or local adjustment. It is natural to think that a
global placement should be paid more attention to.

Based on this assumption, we decide to assign more weight
to CC during the earlier periods of simulated annealing. In
other words, we will adjust the exponent factor k in Equation
(2) according to the swapping radius. When the swapping
radius is large, k is set to a large value. When the radius
is small, k is set to a small value. Although the swapping



radius is changed dozens of times in a typical simulated an-
nealing process, we only use 3 to 4 levels of integer expo-
nents k in our current implementation for simplicity.

Algorithm 1: Computing Bounding Box Cost

procedure COMPBBCOST(r)
CLEARBLKUSAGE(U)
cost← 0
for n← 0 to num nets

GETBOUNDINGBOX(bb[n])
for i← bb[n].xMin to bb[n].xMax

for j ← bb[n].yMin to bb[n].yMax
U [i, j]← U [i, j] + 1

cost← cost + GETNETCOST(n)
congestion← CONGESTIONFUNC(r, U)
return (cost ∗ congestion)

procedure CONGESTIONFUNC(r, U)
sum← 0
sos← 0
levels← maxExp−minExp + 1
for i← 1 to nx

for j ← 1 to ny
sos← sos + U [i, j] ∗ U [i, j]
sum← sum + U [i, j]

base← sos ∗ nx ∗ ny/sum2

k ← minExp + (int)((r − 1) ∗ levels/rMax)
return (basek)

Different exponent attenuation schemes are applied to dif-
ferent circuits accordingly. The criterion to choose a scheme
is the product of the number of nets in each circuit and
rMax, which we consider as circuit complexity. If a circuit
is simple, small exponents are used. If a circuit is compli-
cated, large exponents are used. Take the benchmark circuit
“misex3.net” for example, the product value is 53618, which
is computed with the architecture file, “vpr422 arch.txt” [13].
We used the attenuation scheme of (3, 2, 1) in which the ex-
ponent k is initialized to 3. When the swapping radius is
below 2

3
rMax, k becomes 2. Finally, when the swapping

radius is below 1

3
rMax, k is set to 1. Function “congestion-

Func” in Algorithm 1 contains the details of computing k.
In this case, maxExp is 3 and minExp is 1. The complete
table of maxExp and minExp is given in Table 1.

Algorithm 1 is the pseudocode of our proposed algorithm.
Function “compBBCost()” calculates the final cost based on
the swapping radius r. Function “getBoundingBox()” com-
putes the bounding box for each net and stores its dimension
and location in bb[n]. Function “getNetCost()” obtains the
original bounding box cost computed by VPR, and function
“congestionFunc()” calculates the congestion intensity.

3. EXPERIMENTAL RESULTS

We have implemented and integrated our proposed algo-
rithm in the framework of VPR. The experiments were car-
ried out on a Pentium4 2.8GHz PC with 1GB memory run-
ning the Centos Linux system. The MCNC benchmark cir-
cuits and the VPR source code (version 4.3) were down-
loaded from [13].

Table 1 shows the results of VPR, VPRb and our algo-
rithm. “CP” stands for “Critical Path Delay” and “CW”
stands for “Channel Width”. The results of VPR are ob-
tained by running it with all default settings. Note, by de-
fault, VPR uses the minimum possible number of routing
tracks. The columns labeled “VPRb” show the results when
VPR is run with the option “-place algorithm bounding box”.
In this mode, VPR completely turns off the timing-driven
feature of its placer and focuses solely on minimizing the
overall wirelength. The “Ratio” is the ratio of other results
to VPR’s. It is evident that, compared with VPR, our algo-
rithm reduces the channel width by 7.1% and reduces the
average critical path delay by 0.7%. Circuits placed by our
algorithm are routed by VPR’s router with default param-
eters. Note that the routing channel width required by our
algorithm never exceeds VPR’s which justifies its stability.
We can also see that the number of routing tracks required
by VPRb is only 1% less than ours, but its critical path delay
is 24.5% more than ours. Typically, reducing routing chan-
nel width will result in degradation in timing. Thus, it is
significant that our algorithm is capable of reducing routing
resources without affecting the circuit performance at all.

Most research works minimizing routing resources deal
with ASICs, and only a few focus on FPGAs [7, 8]. We
compare our work with VPR because other research on FP-
GAs seldom provide enough statistics on their timing per-
formance. To our best knowledge, the only work which
can reduce routing channel width without paying any delay
penalty is T-RPack [6], but this algorithm works in the phase
of packing LUTs into clusters. Yet, we can still compare our
results with T-RPack’s. T-RPack works in two modes: in
mode 1 (with population factor), it can reduce channel width
by 5.3% compared to T-VPack [4], but it can not achieve
any performance improvement; in mode 2 (without depop-
ulation), it achieves channel width reduction of 2.67% and
delay reduction of 5%. If we consider T-VPack and VPR as
a whole package [14], it is very clear that our results out-
perform T-RPack on both criteria if it is run in mode 1. If
T-RPack is run in mode 2, the channel width achieved by
our algorithm is still 4.4% lower than T-RPack.

4. CONCLUSION AND FUTURE WORK

In this paper, we presented a congestion driven placement
algorithm for FPGAs. The unique characteristic of our ap-



Table 1: Experiment Results: VPR, VPRb and Our Algorithm

Circuit VPR VPRb Ours
CP CW CP Ratio CW Ratio CP Ratio CW Ratio minExp maxExp

tseng 55.62 8 71.56 1.2866 7 0.875 53.65 0.9646 7 0.875 1 2
apex4 93.25 14 131 1.4048 13 0.9286 92.75 0.9946 13 0.9286 1 3

misex3 95.74 12 107.7 1.1249 11 0.9167 82 0.8565 11 0.9167 1 3
dsip 70.79 7 82.14 1.1603 6 0.8571 66.62 0.9411 6 0.8571 1 4

ex1010 195.3 12 206.1 1.0553 10 0.8333 182.6 0.935 11 0.9167 2 4
clma 228.4 14 243.7 1.067 13 0.9286 213.7 0.9356 13 0.9286 3 5
diffeq 101.5 8 93.38 0.92 7 0.875 63.44 0.625 8 1 1 3
spla 203.1 15 181 0.8912 14 0.9333 158.9 0.7824 15 1 1 4
seq 95.72 12 109.7 1.1461 12 1 81.65 0.853 12 1 1 3

elliptic 137.2 12 187.1 1.3637 11 0.9167 126.8 0.9242 11 0.9167 1 4
pdc 193.5 19 211.3 1.092 17 0.8947 198.9 1.028 17 0.8947 2 4
frisc 135 14 176 1.3037 12 0.8571 142.7 1.057 13 0.9286 1 4

bigkey 78.56 7 88.7 1.1291 7 1 99.46 1.266 6 0.8571 1 4
des 121.2 8 114.7 0.9464 8 1 124.2 1.0248 7 0.875 1 4
alu4 82.1 11 121.7 1.4823 10 0.9091 98.93 1.205 10 0.9091 1 3

apex2 90.02 12 134.8 1.4974 11 0.9167 111.8 1.242 11 0.9167 1 3
ex5p 84.06 15 129.4 1.5394 13 0.8667 87.1 1.0362 13 0.8667 1 1
s298 135.7 8 204 1.5033 8 1 148.5 1.0943 8 1 1 4

s38417 103.3 8 156.9 1.5189 7 0.874 112.3 1.087 8 1 2 5
s38584.1 97.92 8 126.7 1.2939 8 1 98.21 1.003 8 1 2 5

Ave 1.2363 0.9192 0.9928 0.9294

proach is its ability to reduce the routing channel width with-
out elongating the critical path delay. In our current work,
the congestion is treated globally. However, it may become
more precise if each bounding box has its own congestion
value. We would like to explore this idea in our future re-
search.

5. REFERENCES

[1] V. Betz and J. Rose and A. Marquardt, Architecture and CAD
for Deep-Submicron FPGAs. Kluwer Academic Publishers,
1999.

[2] V. Betz and J. Rose, “VPR: A New Packing, Placement and
Routing Tool for FPGA Research,” in Proceedings of the 7th
International Workshop on Field-Programmable Logic and
Applications, 1997, pp. 213–222.

[3] A. DeHon, “Balancing Interconnect and Computation in a
Reconfigurable Computing Array (or, why you don’t really
want 100% LUT utilization),” in Proceedings of the 1999
ACM/SIGDA Seventh International Symposium on Field Pro-
grammable Gate Arrays. ACM Press, 1999, pp. 69–78.

[4] A. Marquardt, V. Betz, and J. Rose, “Using Cluster-Based
Logic Blocks and Timing-Driven Packing to Improve FPGA
Speed and Density,” in Proceedings of the 1999 ACM/SIGDA
Seventh International Symposium on Field Programmable
Gate Arrays, 1999, pp. 37–46.

[5] V. Betz and J. Rose, “FPGA Routing Architecture: Seg-
mentation and Buffering to Optimize Speed and Density,” in
Proceedings of the 1999 ACM/SIGDA Seventh International
Symposium on Field Programmable Gate Arrays, 1999, pp.
59–68.

[6] E. Bozorgzadeh, S. Ogrenci-Memik, X. Yang, and M. Sar-
rafzadeh, “Routability-Driven Packing: Metrics and Algo-
rithms for Cluster-Based FPGAs,” Journal of Circuits Sys-
tems and Computers, vol. 13, no. 1, pp. 77–100, 2004.

[7] M. Schlag, J. Kong, and P. K. Chan, “Routability-Driven
Technology Mapping for Lookup Table-Based FPGA’s,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 13, no. 1, pp. 13–26, Jan. 1994.

[8] G. Parthasarathy, M. Marek-Sadowska, A. Mukherjee, and
A. Singh, “Interconnect Complexity-Aware FPGA Placement
Using Rent’s Rule,” in Proceedings of the 2001 International
Workshop on System-Level Interconnect Prediction. ACM
Press, 2001, pp. 115–121.

[9] M. Wang and M. Sarrafzadeh, “On the Behavior of Conges-
tion Minimization during Placement,” in Proceedings of the
1999 International Symposium on Physical Design. ACM
Press, 1999, pp. 145–150.

[10] C. Chang, J. Cong, and Z. Pan, “Physical Hierarchy Genera-
tion with Routing Congestion Control,” in Proceedings of the
2002 International Symposium on Physical Design. ACM
Press, 2002, pp. 36–41.

[11] A. Marquardt, V. Betz, and J. Rose, “Timing-Driven Place-
ment for FPGAs,” in Proceedings of the 2000 ACM/SIGDA
Eighth International Symposium on Field Programmable
Gate Arrays. ACM Press, 2000, pp. 203–213.

[12] C. Cheng, “RISA: Accurate and Efficient Placement
Routability Modeling,” in Proceedings of the 1994
IEEE/ACM International Conference on Computer-Aided
Design, 1994, pp. 690–695.

[13] http://www.eecg.toronto.edu/˜vaughn/challenge/challenge.html.
[14] http://www.eecg.toronto.edu/ vaughn/vpr/vpr.html.


