Lecture 11: Efficient Design of Flash ADC

CSCE 6933/5933 Advanced Topics in VLSI Systems

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and other sources for academic purpose only. The instructor does not claim any originality.

A 45*nm* Flash Analog to Digital Converter (ADC)

Outline

- Introduction and Motivation
- Specifications
- Related Research Works
- Design of flash ADC
- The TIQ principle
- TIQ Comparator
- Sizing of transistors
- Functional Simulation
- Ideal vs Actual Characteristics
- DNL
- INL
- SNDR
- Instantaneous Power Plot
- Conclusion and Future Works

Introduction and Motivation

- ADCs are interfaced with digital circuits in mixed signal chips, where digital signal processing is performed.
- Supply voltage decreasing rapidly for digital circuits as technology scales.
- Analog to digital converters required to be operating with these devices at the same voltages.
- The proposed design meets both criteria: Low supply voltage (0.7*V*) and technology (45*nm*).

Specifications

- Resolution : 6 bits.
- Technology : 45nm.
- Speed : 1Gs/sec.
- V_{LSB} : $500\mu V$.
- V_{DD} : 0.7V.
- : 0.46*LSB*. INL •
- DNL : 0.70*LSB*.
- SNDR

- : 31.9*dB*.

Related Research Works

Reference	Resolution (bits)	Technology (nm)	DNL (LSB)	INL (LSB)	SNDR (dB)	VDD (V)	Power (mW)	Samples/s ec.
Choi 2001	6	350	<±0.3	<±0.3	32	3.3	545	1.3G
Donovan 2002	6	250			33	2.2	150	400M
Geelen 2001	6	350	<0.7	<0.7	5.6 (ENOB)	3.3	300	1.1G
Lee 2002	6	250	1.04	0.81		2.5	59.91	1.11G
Mehr 1999	6	350	< 0.32	<0.2	>5(ENOB)	3.3	225	500M
Sandner 2005	6	130	<0.4	<0.6	32.5	1.5	160	600M
Scholtens 2002	6	180		0.42	5.7(ENOB)	1.95	328	1.6G

Related Research Works....

Reference	Resolution (bits)	Technology (nm)	DNL (LSB)	INL (LSB)	SNDR (dB)	VDD (V)	Power (mW)	Samples/s ec.
Song 2000	6	350	-0.6	0.7	33.5	1	10	50M
Srinivas 2006	6	350	0.3	0.3	33.6	3.3	50	160M
Tseng 2004	6	250	<±0.1	<±0.4	32.7	2.5	35	300M
Uyttenhov e 2000	6	350			32	3.3		1G
Uyttenhov e 2002	6	250	0.42	0.8	32	1.8	600	1.3G
Yoo 2001	6	250				2.5	66.87	1G
This Design	6	45	0.7	0.46	31.9	0.7	45.42µW	1G

Design of flash ADC

High level block diagram of ADC.Input is analog (generally ramp or sine wave).

Output of Comparator Bank is thermometer code.

Converted to 1-out of n code using 1-out of n code generators.

□ NOR ROM converts the 1-out of n code to binary code.

Design of flash ADC

- For an n-bit ADC we need:
 2ⁿ-1 Comparators.
- 1-out of n code generators.
- NOR ROM : $2^{n}-1 \times n$.
- For discussion purposes,3-bit flash ADC is shown. 6-bit ADC has similar structure.

Threshold Inverter Quantization Principle

□TIQ comparator.

Formed by cascading of digital inverters.Sizing of transistors determine switching point.

Differential comparator.Require resistive ladder network.Area overhead increases.

TIQ Comparator

□Formed by four cascaded inverters.

Provide a sharper switching for the comparator and full voltage swing.

□Sizes of PMOS and NMOS in a comparator are same, but different for different comparators.

Transistor sizing

DC Response

DC parametric sweep is used to determine the transistor sizes.

□Input voltage varied from 0 to 0.7V in steps of $500\mu V$.

 \Box W/L for NMOS transistors kept as 90*nm*/90*nm*. L for PMOS transistors kept as 90*nm*. W for PMOS transistors was given a parametric sweep in steps of 1*nm*. Minimum width=51*nm*,maximum width=163*nm*.

12

Functional Simulation

□Transient analysis carried out.

CRamp generated from 296.3*mV* to 327.8*mV*. Digital codes going from 0 to 63 are obtained at the output.

Ideal vs Actual Characteristics

□Ideal vs actual transfer function

Due to transistor implementation, actual transfer function never equal to ideal transfer function.

Characterized using DNL and INL.

Max DNL of ADC = 0.7LSB

Differential Non-Linearity. Difference between actual step width and ideal value of 1LSB.

□Modeled as Verilog-A block. Uses histogram method. DNL<1*LSB* ensures monotonicity.

Max INL of ADC =0.46*LSB*

□Integral No-linearity. Deviation of actual transfer function from a straight line. expressed in *LSB*.

□Verilog-A block used. Slowly varying ramp given as input, covering full scale range in 4096 steps.

SNDR = 31.9dB

Instantaneous Power Plot

Transient Response

□ Peak Power= $45.42\mu W$. □ Avg. Power= $8.8\mu W$. □ Low power design.

Conclusions

- Successful ADC design at nano-scale (45*nm*)technology.
- DNL=0.7*LSB*,INL=0.46*LSB*.
- SNDR=31.9dB, Low power design (Avg. Power = $8.8\mu W$).
- Layout using 90*nm* general process design kit.
- Scaling the layout rules to perform layout at 45*nm*.

A Process and Supply Variation Tolerant Low Voltage, High Speed ADC

Outline of the Talk

- Introduction and Motivation
- Contributions, Design issues and Solutions
- Related Prior Research Works
- Transistor level design of the proposed ADC
- Physical design and Characterization of ADC
- Process and Supply variation Characterization
- Conclusion and Future Works

Introduction: Why Nano-CMOS ADC

- A large number of SoCs manufactured at the 90nm process, 65nm, 45nm closely following.
- Challenge is to meet performance of analog circuit with that of digital portion.
- Systems that once worked at 3.3/2.5V need to work at 1.8V without performance degradation.
- New circuit design techniques required to accommodate lower supply voltages.
- Analog/Mixed signal circuits should be designed using standard CMOS digital process.

Introduction: Nano-CMOS ADC

- ADC is a true mixed signal circuit used to bridge the gap between analog circuits and digital logic world.
- ADC circuit designs often contain matched transistors. In analog circuits, threshold voltage mismatch needs to be considered.
- For SoC capability, supply voltage variation should also be accounted.
- The demand for emerging application-specific, nanoscale mixed-signal SoCs which need process (threshold voltage mismatch) and power supply voltage variation tolerant ADC interfacing has motivated this research.

Design Issues and Solutions

- Logical and physical design of a process and supply variation tolerant ADC using 90nm technology, suitable for SoC integration.
- Post-layout simulation results presented.
- Low supply voltage ($V_{dd} = 1.2V$), low power (Power αV_{dd}^2). Low V_{dd} puts constraint on the choice of 63 quantization levels (for 6-bit ADC in this paper). *LSB* = 1mV chosen for this design.
- *INL* degradation (*INL* > 1LSB) observed in the initial physical design, due to IR drop in the supply lines. *INL* =0.344LSB, by using large number of contacts and widening the supply lines.
- Power analysis with *100fF* reveals ADC consumes minimal power.

Related Prior Research Works

Works	Tech. (nm)	DNL (LSB)	INL (LSB)	V _{dd} (V)	Power (mW)	Rate (GS/s)
Geelen[9]	350	< 0.7	< 0.7	3.3	300	1.1
Uytttenhove [19]	350			3.3		1
Donovan [6]	250			2.2	150	0.4
Tseng [8]	250	< 0.1	< 0.4	2.5	35	0.3
Yoo [11]	250			2.5	66.87	1
Scholtens [16]	180		0.42	1.95	328	1.6
Sandner [7]	130	< 0.4	< 0.6	1.5	160	0.6
This Work	90	0.459	0.344	1.2	3.875	1

Low Technology, low voltage, low power, high speed design with satisfactory *DNL*, *INL* performance.

Transistor Level Design of the Proposed ADC

ADC: Block Diagram

Output of Comparator Bank is thermometer code.
 Converted to 1-of n code using 1-of n code generators.
 NOR ROM converts the 1-of n code to binary code.

ADC : Circuit Diagram

Comparator Design : Technique

- Comparator designed using Threshold Inverting (TI) technique.
- Advantages of TI technique:
 - 1. High speed.
 - 2. Simplicity.
 - 3. Eliminates the need for inherently complex high-gain differential input voltage comparators and additional resistor ladder circuit.

Comparator Design : Circuit

*V*_{switching} set internally based on transistor sizes.
 Inverter 1 and 2 form the baseline comparator, while Inverter 3 and 4 provide increased gain and sharper switching.

Comparator Design : Equations

For short channel transistors:

$$V_{switching} = V_{dd} \left(\frac{R_n}{R_n + R_p} \right), R_n = \text{NMOS effective switching resistance.}$$

$$InputVoltageRange=V_{dd} - \left(V_{tn} + \left|V_{tp}\right|\right),$$

 V_{dd} = supply voltage. V_{tn} = NMOS threshold voltage. V_{tp} = PMOS threshold voltage. Values chosen 493mV to 557mV.

$$V_{LSB} = \left(\frac{InputVoltageRange}{2^n}\right),$$

For our design, $V_{LSB} = 1mV.$

1 of n code generator Design

- Converts thermometer code into 1 of n code.
- Consists of AND gates as combination of an inverter followed by a NAND gate.
- Output from each of the AND gates is fed to the input of the NOR ROM.
- One of the two inputs to the AND gate is fed from the TI comparator output.
- The other input to the AND gate is the inverted output from the next level comparator.

NOR ROM Design

- Converts 1-of-n code to binary code.
- Consists of PMOS (135nm/180nm) pull-up and NMOS (180nm/180nm) pull-down devices.
- 63 word lines , 6 bit lines, 63 x 6 NOR ROM designed.
- Wp < Wn, to ensure PMOS is narrow enough for NMOS to pull down output safely.
- Buffers, consisting of two cascaded inverters (PMOS: 480nm/120nm, NMOS: 240nm/120nm) are applied at the outputs to obtain symmetrical waveforms, with equalized rise and fall times.

Physical Design and Characterization of ADC

ADC: Physical Design

- Physical design of the ADC carried out using 90nm Salicide "1.2V/2.5V 1 Poly 9 Metal" digital CMOS pdk, demonstrating SoC readiness.
- To ensure minimal IR drop, power and ground routing comprises of wide vertical bars and generous use of contacts has been made.

Post Layout Functional Simulation

- Transient analysis is carried out, where a linearly varying ramp covering full scale range of ADC, is given as input.
- Output digital codes from 0 to 63 obtained correctly, with no missing codes. Maximum sampling speed - 1GS/s.

Discover the power of ideas

Characterization: Equations

- ADC characterized for static performance.
- Nominal characterization: Histogram test used to determine *INL* (Integral Non-Linearity), *DNL* (Differential Non-Linearity).
- Equations for INL, DNL:

$$INL[i] = width[i] + INL[i-1] - 1$$

$$DNL[i] = width[i] - 1$$

width[i] =
$$\frac{1 * bucket[i]}{hits * (NUM_{CODES} - 2)}$$

- where **bucket** holds the number of code hits for each code.
- *width* holds the code width calculations.
- Total hits between codes 1 and 62 is denoted as *hits*.
- *NUM_{CODES}* is the number of codes, 64 for a 6-bit ADC.

Characterization: INL and DNL Plots

- Maximum INL=0.344LSB.
- Maximum DNL=0.459LSB.

Power Analysis

Instantaneous Power Plot.

Power analysis of the ADC performed with a capacitive load of 100fF.
Peak Power = 5.794mW.
Average Power = 3.875mW.

ADC Components	Average Power (mW)
Comparator Bank	3.68125 (95%)
1 of n code Generators	0.03875 (1%)
NOR ROM	0.155 (4%)
Total	3.875

ADC Performance

Parameter	Value
Technology	<i>90nm</i> CMOS 1P 9M
Resolution	6 bit
Supply voltage (V _{dd})	1.2V
Sampling Rate	1GS/s
INL	0.344LSB
DNL	0.459LSB
Peak Power	5.794mW@1.2V
Average Power	3.875mW@1.2V
Input Voltage Range	493mV to 557mV
V _{LSB}	1mV

Process and Supply variation Characterization

Process Variation

- Corner-based methodology is used.
- NMOS threshold voltage (V_{tn}) and PMOS threshold voltage (V_{tp}) varied by ±5% from nominal value in the pdk.
- Shift in *INL, DNL,* input voltage range recorded.
- *INL* shows maximum variation of *10.5%*.
- *DNL* shows maximum variation of *5.7%*.

Process Variation: Corner Method

Process Variation: INL and DNL

Vtp, Vtn	Input Range (mV)	V _{LSB} (mV)	INL <i>(LSB)</i>	DNL (LSB)
nominal	493-557	1	0.344	0.459
+5%, +5%	495-557	0.96875	0.333	0.46
-5%, -5%	491-556	1.015625	0.345	0.477
-5%, +5%	500-564	1	0.36	0.485
+5%, -5%	501-566	1.015625	0.38	0.479

Supply Variation : INL and DNL

- Nominal supply voltage (1.2V) varied by ±10%.
- INL, DNL, and input voltage range values are recorded.
- INL shows maximum variation of 4%.
- DNL shows maximum variation of 4.8%.

Vdd(V)	Input Range (mV)	V _{LSB} (mV)	INL <i>(LSB)</i>	DNL (LSB)
1.08V (-10%)	448-500	0.8125	0.359	0.467
1.2V (nominal)	493-557	1	0.344	0.459
1.32V (+10%)	537-614	1.203	0.339	0.481

Conclusion and Future Works

- Design of a process and supply variation aware low voltage, high speed flash ADC presented.
- Comparators designed using threshold inverting (TI) technique.
- ADC subjected to $\pm 10\%$ supply variation, $\pm 5\%$ threshold voltage mismatch.
- Nominal *INL=0.344LSB*, maximum variation of *10.5%*.
- Nominal *DNL=0.459LSB*, maximum variation of *5.7%*.
- It is demonstrated that the design of low voltage, high speed and SoC ready ADCs is possible at 90nm technology and below.
- We plan to carry out the complete design cycle for this ADC at *45nm*.
- Alternative encoder architectures will be explored to achieve higher sampling speeds.

