Lecture 8: Process Variation Tolerant Sense **Amplifier Design** CSCE 6933/5933 **Advanced Topics in VLSI Systems** Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and other sources for academic purpose only. The instructor does not claim any originality.

Outline

- Introduction
- Related Prior Research
- Functional Design of Sense Amplifier Circuits
- Design Optimization Dual Oxide Technique
- Design Optimization Dual Threshold Voltage Technique
- Conclusions

Introduction

- Dynamic Random Access Memories (DRAMs) are important parts of computing systems
- Relatively fast but not as fast as SRAMs
- Densely Packed
 - 4 times denser than SRAM
- Memory Hierarchy

Motivation

• Memory keeps lagging CPU speed performance

UNIVERSITY OF NORTH TEXAS Discover the power of ideas

Introduction: Background

- Historical background
- 1K DRAM designed in 1970

Used 3-T cells

- 4Kb 64Mb DRAM
 - Used 1T-1C cells
 - CMOS technology
 - Multiplexed addressing
- Gb-SDRAM Era (Current Technology)
 - Access synchronized with master clock

Background

Basic Organization of DRAM

Memory Array

Memory cells of a folded bitline array

- the word line selects a whole row of cells
- the bit line reads and writes the capacitor
- The sense amplifier connects two columns, one serves as a reference cell
- All columns are active on a row access

Sense Amplifier: Background and Operation

- Major Functionality:
 - Detect and amplify voltage change
 - Refresh circuit
 - Act as column buffers
- Basic Access Operations
 - To access (read or write to a cell) there are three basic operations performed – the precharge, row and column access.
 - The precharge phase charges all bitlines to a determined voltage, usually $V_{DD}/2$.

Sense Amplifier: Background and Operation

- For a read operation,
 - The row access activates the wordline of the cell and all the capacitors begin to share charge with the bitlines.
 - Sense amplifiers sense and magnify voltage changes.
 - The data from the sense amplifier is selected by the column bit during the column access.
- Write Operation.
 - The row access activates the wordlines.
 - The bitline drives the the cell to a "0" or "1" depending on the value to be written.
- Refresh Operation: This is done by reading every address of the DRAM.

Issues in Nanoscale DRAM Circuit Design

- Variability: Variability in process and design parameters becomes more acute due to scaling technologies and processes
- Leakage: Leakage is increasing due to scaling of oxide thickness
- Power Consumption : current leakage increases the static power consumption

Process Variation

- Process variations occur due to different manufacturing environments and process difficulty
- The effects of the process variation result in varying device parameters including:
 - supply voltage,
 - threshold voltages,
 - oxide thickness,
 - transconductance,
 - channel lengths,
 - channel widths, and
 - source and drain doping concentration

Process Variations Classifications

Global Variations

Salient Points of this Design Flow

- Analysis of effects of device parameters on FoMs of a sense amplifier.
- Analysis of effect of process variation on the performance of full latch sense amplifier.
- Design process to limit the effects of process variations with optimizations to FoMs.
- Exploring dual-Tox and dual-Vth for sense amplifier optimization.

Related Prior Research

Research	Parameter	Feature	Approach	Result Improvement
Sherwin	V _{DD}	Voltage gain	Physical measurements	-
Chow	C _{BL}	Sense Speed	Spice simulations	Sense speed – 40%
Laurent	C_{BL}, V_{th}, β	Signal Margin	Spice Simulations	-
Vollrath	C_{BL}, V_{th}, β	Signal Margin	Physical measurements	-
Choudhary	V _{th} , L, W	Yield	Monte Carlo analysis	Improved Yield
Hong	-	Sense scheme	Spice simulations	Improved sense amplifier cell ration
Singh		SE rise time	Spice simulations	Eliminated offset voltage
This research	$Dual-V_{th}$	Process variability	Optimization	Sense delay – 80.2% Sense margin – 61.9%

Sense Amplifiers Topologies

- Voltage Based Sense Amplifiers
 - Sense and amplify a small differential voltage
 - Variations include cross couple and full latch cross couple
- Current Based Sense Amplifiers
 - Sense and amplify small differential currents
 - Lower input capacitance
 - Includes current-mirror, clamped bitline current amplifier

Functional Design of Sense Amplifier

- Two cross coupled inverters
- The major parts of the full latch voltage sense amplifier are
 - Nsense Amps
 - Psense Amps
 - Precharge and Equalization Circuits

Nsense and Psense Amplifiers

Nsense amplification

- Nsense amplifiers activated by SE through N3
- N2 begins to conduct and eventually pulls V_{bl} to ground

$\square Psense amplification$ VDD $SE \qquad | P1 \qquad | P2 \qquad | P2 \qquad | P3 \qquad | P4 \qquad$

- Psense amplifiers activated by SEbar through P1
- P2 begins to conduct and eventually pulls V_{bl}bar to ground

Precharge Circuit

- When PRE signal goes high, Vbl and Vblbar are charged to VDD/2 through M1 and M2 Psense amplifiers activated by P1
- M3 Helps to speed up the process

Functional Design of Sense Amplifier

Equations for Charge Sharing

$$\Delta \mathbf{V} = \frac{C_S}{C_S + C_{BL}} \left(V_{CS} - \frac{V_{DD}}{2} \right)$$

when bit cell value is 1, $V_{CS} = V_{DD} - V_{th}$

$$\Delta \mathbf{V} \approx -\frac{C_S}{C_{BL}} \left(\frac{V_{DD}}{2} - V_t \right)$$

when bit cell value is 1, $V_{CS} = 0$

$$\Delta \mathbf{V} \approx -\frac{C_S}{C_{BL}} \left(\frac{V_{DD}}{2} \right)$$

Physical Layout for 45nm Sense Amplifier

Waveform Simulation

Figures of Merit

- Precharge and Equalization Time
- Average Power Consumption
- Sense Delay
- Sense Margin

Table for Figures of Merit Characterization

FoM	Precharge	Power	Sense Delay	Sense Margin
Value	7.50 ns	153.101 mW	4.39 ns	43.46 mV

Parametric Analysis

The following parameters analysed

- Gate Lengths and Widths (L_n, L_p, W_n, W_p)
- Voltage Supply (V_{DD})
- Cell Capacitance (C_S)
- Bitline Capacitance (C_{BL})
- Oxide Thickness (T_{oxn}, T_{oxp})
- Threshold Voltage (V_{thn}, V_{thp})

Sensitivity of FoMs on Ln

Advanced Topics in VLSI Systems

Sensitivity of FoMs on Lp

Sensitivity of FoMs on Wn

Sensitivity of FoMs on Wp

Summary of Effects of Parameter Variations on FoMs

Table of Parameter Variations

Parameter	Precharge	Power	Sense Delay	Sense Margin
L _n	decrease	increase	mild decrease	mild increase
L _p	increase	decrease	mild decrease	mild decrease
W _n	decrease	increase	decrease	decrease
W _p	increase	increase	mild decrease	decrease
V _{DD}	decrease	increase	decrease	increase
C _S	increase	increase	decrease	increase
C _{BL}	increase	increase	mild increase	decrease
V _{thn}	increase	decrease	increase	mild decrease
V _{thp}	increase	decrease	increase	mild decrease
t _{oxn}	decrease	increase	decrease	increase
t _{oxp}	decrease	decrease	mild decrease	mild increase

Dual Oxide Technology

- A Monte Carlo analysis of the effects of process variation of design parameters on FoMs
 - Parameters were varied at +/- 10% of selected values from parametric analysis
- A Monte Carlo analysis of the FoMs reaction to variation of individual parameters
- Transistors are assigned different oxide thickness for optimizing design
 - $-T_{ox,high} = 3nm$
 - $-T_{ox,low} = 2.4$ nm
- FoM's are analyzed with different oxide thickness

Monte Carlo Analysis: PDF of FoMs

Advanced Topics in VLSI Systems

UNIVERSITY OF NORTH TEXAS Discover the power of ideas 30

Probability Density Function of Different FoMs of the Sense Amplifier

Params	Precharge PDF		Power PDF		Sense Delay PDF		Sense Margin PDF	
	μ (ps)	σ(ps)	μ (nW)	σ(nW)	μ (μs)	σ(ps)	μ (mV)	σ(μV)
L _n	773.65	13.81	191.67	0.56	1.26	16.79	10.67	32.22
L _p	773.44	2.40	191.67	0.06	1.26	0.15	10.68	2.22
W _n	773.18	5.04	191.71	0.50	1.25	15.82	10.67	102.41
W _p	774.08	6.34	190.69	2.07	1.26	0.22	10.68	13.49
V _{DD}	772.72	123.68	190.85	27.25	1.30	0.36	10.21	2074.63
C _S	772.61	0.20	191.68	0.25	1.26	49.81	10.66	367.51
C _{BL}	773.48	14.76	191.73	6.38	1.26	3.76	10.69	591.49
t _{oxn}	774.15	11.68	191.32	1.47	1.26	25.48	10.62	311.87
t _{oxp}	773.74	2.05	192.06	1.93	1.26	0.10	10.68	65.80

Flow Diagram

Discover the power of ideas

Algorithm 1 Heuristic algorithm for sense amplifier optimization using Dual Oxide Based Tech-

nology 1: Create the netlist of the sense amplifier circuit.

- 2: Number each of the transistors in the netlist from 1 to N.
- 3: for Each of the transistors i = 1 to N do
 - Rank the transistors for a figure of merit. For example, contributions to precharge.
- 5: Identify the significant transistors from the ranks, e.g. 30% or 50%
- 6: **end for**

4:

- 7: Start with the highest ranked transistor as i = 0
- 8: while Design constraint of the sense amplifier is met and the transistor M_i is a significant transistor that contributes to the overall FoM value of the sense amplifier do
- 9: Increase thickness oxide of the the transistor M_i
- 10: Move to the next ranked transistor

11: end while

Dual Threshold Voltage Technology

- A Monte Carlo analysis of the effects of process variation of design parameters on FoMs
 - Parameters were varied at +/- 10% of selected values from parametric analysis
- A Monte Carlo analysis of the FoMs reaction to variation of individual parameters
- Transistors are assigned different threshold voltages for optimizing design

$$-V_{th,high} = 0.36V$$

- $-V_{\text{th,low}} = 0.18V$
- FoM's are analyzed with different threshold voltages

PDF of FoMs

Probability Density Function of Different FoMs of the Sense Amplifier

Params	Precharge PDF		Power PDF		Sense Delay PDF		Sense Margin PDF	
	μ (ps)	σ(ps)	μ (nW)	σ(nW)	μ (μs)	σ(ps)	μ (mV)	σ(μV)
L _n	598.01	4.22	94.93	3.13	770.10	80.85	7.89	907.49
L _p	597.92	4.12	94.20	3.08	770.12	80.85	7.88	914.88
W _n	598.20	5.47	94.16	3.03	770.20	81.01	7.87	920.6
W _p	597.93	4.16	94.15	3.25	770.12	80.86	7.88	913.22
V _{DD}	602.37	17.83	94.59	16.88	803.06	211.95	6.93	3154.05
C _S	597.93	4.15	94.18	3.02	769.13	89.73	7.87	943.99
C _{BL}	597.82	6.16	94.11	4.11	770.41	81.40	7.91	999.44
V _{thn}	598.69	5.93	94.42	3.12	774.26	98.08	7.89	1007.7
t _{oxn}	598.19	5.09	94.36	3.53	773.61	90.90	7.82	1220.27
t _{oxp}	598.11	4.20	94.41	3.09	771.42	85.22	7.96	1003.42

Advanced Topics in VLSI Systems

Flow Diagram/Algorithm

UNIVERSITY OF NORTH TEXAS Discover the power of ideas Algorithm 2 Heuristic algorithm for sense amplifier circuit optimization using Dual Threshold

Based Technology

- 1: Create the netlist of the sense amplifier circuit.
- 2: Number each of the transistors in the netlist from 1 to N.
- 3: for Each of the transistors i = 1 to N do
- 4: Rank the transistors for a figure of merit. For example, contributions to precharge.
- 5: Identify the significant transistors from the ranks, e.g. 30% or 50%, etc

6: end for

- 7: Start with the highest ranked transistor as i = 0
- 8: while Design constraint of the sense amplifier is met and the transistor M_i is a significant transistor that contributes to the overall FoM value of the sense amplifier **do**
- 9: Increase threshold voltage of the transistor M_i .
- 10: Move to the next ranked transistor.
- 11: end while

Characterization of Optimized Design

• The FoM's are improved on the final design.

FoMs	Precharge	Power	Sense Delay	Sense Margin
Baseline	7.5 ns	153.1 µW	4.4 ns	43.4 mV
Dual-V _{th} -Optimal	1.2 ns	133.1 µW	0.87 ns	70.4 mV
Improvement	83.9%	13.1%	80.2%	61.9%

Conclusions

- The effects of process variation were analyzed through parametric and Monte Carlo analysis.
- A method of producing more tolerant and optimal designs was presented.
- FoM's were improved
 - Precharge by 83.9%
 - Sense delay by 80.2%
 - Sense margin by 61.9%
 - Power dissipation by 13.1%
- Analysis will be extended to different sense amplifier topologies.

