Lecture 6: Sigma-Delta Modulator and Evaluation of SPICE

# CSCE 6933/5933 Advanced Topics in VLSI Systems

Instructor: Saraju P. Mohanty, Ph. D.

**NOTE**: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and other sources for academic purpose only. The instructor does not claim any originality.





#### Outline

- Introduction
- Our Contribution
- High level Design of Sigma-Delta Modulator
- Design of Individual Components
- Comparative view of various Analog Circuit Simulators





#### **Two Points to Discuss**

- The design of Sigma-Delta modulation is done using Verilog-A in Cadence and design of individual components (Diff-Amp, Op-Amp and Comparator) in CMOS transistor level in Spectre.
- And Comparison and Evaluation of existing analog circuit simulators. Circuit Simulators which are considered are Ngspice, Tclspice, Winspice and Spectre.





### **Analog Circuit Simulators**

- Analog circuit simulator is a tool which is used to design and predict the circuit behavior before the fabrication.
- History
  - In 1970, the First Analog circuit simulator named CANCER (Computer Analysis of Non-Linear Circuits Excluding Radiation), was developed by Ron Rohrer and his research team at University of California.
  - In 1972, Nagel and Pederson released SPICE1 (Simulation Program with IC Emphasis) into the public domain so that people can modify and upgrade the code.
  - In 1975, Nagel, who upgraded the SPICE1, made some significant improvements and named it as SPICE2.
  - In 1985, SPICE3, circuit simulator, was upgraded and written in C programming language.





# **Analog Circuit simulator**

- The circuit simulators which are compared and evaluated are as follows :
  - > Ngspice
  - > Tclspice
  - > Winspice
  - Spectre





Ngspice

- Ngspice is a circuit simulator which is a continuation of SPICE3f5 and runs in UNIX environments.
- Ngspice was developed at the University of Rome by Paolo Nenzi.
- Ngspice is an open-source and the source-code is available online.
- The required package to Ngspice is Xgraph.





#### Tclspice

- Tclspice an improved version of SPICE3f5 is a circuit simulator to be used on Tcl/Tk scripting language and it runs in in UNIX environments.
- Tclspice is also an open-source (BSD license) and the source-code is available online.
- The required packages to Tclspice are Tcl\Tk, BLT and Tclreadline.





#### Winspice

- Winspice an extension of Spice3f4 is an analog circuit simulator different from circuit simulators Ngspice and Tclspice.
- Winspice runs on win32.
- This is a tool developed to increase capability, adds new model and new applications.





Spectre

- Spectre is an analog circuit simulator which is very much efficient and stable.
- It is a commercial software developed by cadence and used by many VLSI companies.
- Spectre is developed to improve capability and also to add built-in models for semi-conductor.
- It runs on UNIX environments and it has schematic editor to design the circuits.



#### **Example Circuits**

- Differential Amplifier: Differential amplifier is a circuit which amplifies the difference between two input signals.
- Operational Amplifier: Operational Amplifier (Op-Amp) is a popular device in linear circuits. It produces an output which is a product between inverting and non inverting inputs.
- Comparator: Comparator is a circuit which compares two analog input voltages and produces a digital output.





#### Sigma-Delta Modulator

- Sigma-Delta modulation based analog to digital (A/D) conversion technology is an effective alternative for high resolution converters.
- Such a technique is not only cost efficient but also can be integrated on DSP Ics.
- Increased use of digital technology in communication mechanisms propelled the introduction of cost effective high resolution A/D converters.





#### High Level Design of Sigma-Delta Modulator



Block Diagram of Sigma-Delta Modulator





#### High Level Design of Sigma-Delta Modulator

- Design of an Ideal Sigma-Delta Modulator.
- Verilog-A code for the Ideal Sigma-Delta Modulator mainly consists of summing junction, Integrator, Quantizer and 1-bit DAC.
- Design all individual components of Sigma-Delta Modulator such as summing junction, Integrator, Quantizer and 1-bit DAC using Verilog-A.
- Connect all the individual components to design Sigma-Delta Modulator.





#### **Output for Ideal Sigma-Delta Modulator**







# High Level Design of Summing Amplifier

- The working of summing amplifier is the sum of the input signal (Vin) of Sigma-Delta Modulator and Output of the 1-bit DAC (Vd).
- Graph of the Summing Amplifier is shown below.

UNIVERSITY OF NO

Discover the power of ideas





#### High level Design of Integrator

- The output voltage (vint) of the integrator will be the sum of the output voltage of the summing Amplifier (vsum) and output of the integrator (vint).
- Graph of the integrator is shown below.

UNIVERSITY OF NOT

Discover the power of ideas





16

#### High level Design of Quantizer

- The working of the Quantizer is if V(vin) > vth then the output for the quantizer will be vout\_val = +1 otherwise Vout\_val = -1. Where Vout\_val is an instance parameter.
- Graph of quantizer is shown below.







#### High level Design of 1-bit DAC

- The working of 1-Bit DAC is the product of input voltage V(vout\_val) and vout\_high. The V(vout) will be the output voltage vout\_val for the 1-bit DAC. Where Vout\_val and vout\_high is an instance parameters.
- The graph of 1-bit DAC is shown below.







#### High level design of Gain Amplifier

- The working of the Gain amplifier is the product of input voltage V(vout\_val) and vout\_high. Where vout\_high is an instance parameter.
- Graph of Gain amplifier is shown below.







### High Level Design of Sigma-Delta Modulator using Individual Components

- Connecting all the individual components of Sigma-Delta Modulator such as Summing Amplifier, Integrator, Quantizer, 1-Bit DAC and Gain as shown in the block diagram.
- The output of the Sigma-Delta Modulator is shown.







#### **Design of Individual Components**

- The individual components which we designed are as follows:
  - Differential Amplifier
  - > Operational Amplifier
  - Comparator
- All components are designed in CMOS transistor level design using BSIM4 Model.
- Differential Amplifier and Operational Amplifier are designed in 50 nm.
- Comparator is designed in 1um technology.





# Design of Differential Amplifier (Diff-Amp)

- Differential amplifier is a circuit which compares two input signals and amplifies the difference between them.
- Diff-amp is designed in 50 nm technology using BSIM4 model file.



Circuit Diagram for Short-channel Biasing Circuit





# **Differential Amplifier: Circuit**

- Differential amplifier is a circuit which compares two input signals and amplifies the difference between them.
- The differential amplifiers have two gains one is common gain and the other is differential gain and the ratio of them gives Common Mode Rejection Ratio:

$$CMRR = 20 \log \left| \frac{A_d}{A_c} \right|$$





# **Differential Amplifier: Transient Analysis**







#### Differential Amplifier : Common Mode Rejection Ratio



Advanced Topics in VLSI Systems

UNIVERSITY OF NORTH TEXAS Discover the power of ideas



#### **Operational Amplifier**

- To design a Operational Amplifier it requires a short-channel biasing circuit.
- The parameters given at scale for the NMOS the length L=2 and the width W=50; for PMOS length L=2 and the width W=100.
- Op-Amp is designed in 50 nm technology using BSIM4 model file.





# Operational Amplifier: Circuit for AC Analysis







#### **Operational Amplifier: Circuit Diagram**



 The inputs Vbias1, vbias2 Vbias3 Vbias4, Vpcas and Vncas are the outputs of the short-channel biasing circuit.





#### **Operational Amplifier: Transient Analysis**



Here vin is pulse voltage of 0.1 V to 0.9 V at a delay of 510nsec and vm is 0.5 V.





# Operational Amplifier: Frequency Vs Bandwidth







# **Comparator: Block Diagram**



- The comparator mainly consists of 3 stages: preamplication, decision stage and the output buffer.
- The preamplication stage amplifies the input signal to improve the comparator sensitivity.
- The decision stage determines which of the input signal is larger.
- The output buffer amplifies the signal and gives the output.





# **Comparator: Circuit Diagram**







#### Comparator: Circuit Diagram ...

- The working of comparator is if vp > vm then logic of the circuit is VDD otherwise 0.
- The circuit diagram of comparator is shown.







#### **Comparator : Transient analysis**



Here vp is 2.5 v and vm is pulse voltage of 2.45 v to 2.55 v at a delay of 120 micro sec using BSIM4 model file.





# Comparative view of Various Analog Circuit Simulators

- Compare and evaluate the circuit simulators by considering the benchmark circuits.
- Simulate the benchmarks and plot the outputs.
- Compare and evaluate the benchmarks by considering the metric quantities such as Execution Time, Accuracy and Convergence.





#### **Execution Time : Comparison**

| Benchmarks | Circuit Simulator (Time in seconds) |          |          |         |
|------------|-------------------------------------|----------|----------|---------|
|            | Ngspice                             | Telspice | Winspice | Spectre |
| Test1      | 0.059                               | 0.07     | 0.203    | 0.11    |
| Test2      | 0.045                               | 0.12     | 0.234    | 0.16    |
| Test3      | 0.044                               | 0.12     | 0.235    | 0.13    |
| Test4      | 0.29                                | 0.12     | 0.109    | 0.12    |
| Test5      | 0,45                                | 0.21     | 0.281    | 0.17    |
| Test6      | 0.45                                | 1.48     | 0.25     | 0.14    |
| Test7      | 0.044                               | 0.09     | 0.25     | 0.14    |
| Test8      | 0.03                                | 0.1      | 0.141    | 0.16    |
| Test9      | 0.046                               | 0.1      | 0.25     | 0.15    |
| Test10     | 0.046                               | 0.09     | 0.25     | 0.18    |
| Test11     | 0.048                               | 0.11     | 0.25     | 0.15    |
| gstage     | 0.017                               | 0.11     | 0.15     | 0.09    |
| R0_17      | 2.634                               | 0.14     | 3.532    | 1.86    |
| Comparator |                                     |          | 0.15     | 0.02    |
| Op-Amp     | а:<br>8                             |          | 24       | 0.48    |

**Execution Time Table** 





### **Output for Benchmark Test 1**







## **Output for Benchmark Test 2**







#### **Output for Benchmark Test 4**







#### **Accuracy Comparison**

- The Accuracy of a circuit simulator is determined by calculating the outputs of the benchmarks and comparing the same with all the available circuit simulators.
- Compare the accuracy of various circuit simulators with that of the Spectre.
- Spectre is a efficient and stable circuit simulator.





#### **Convergence Comparison**

- Convergence is calculated by changing the tolerance values for the benchmarks.
- By changing the tolerance value, it will change number of iterations then it change the convergence.
- For all the circuit simulators, the default tolerance values are as follows:
  - retol=1e-3
  - > vabstol=1e-6
  - ▹ iabstol=1e-12



#### Conclusions

- Designed Sigma-Delta Modulator and individual components of Sigma-Delta Modulator.
- Compared and evaluated the existing analog circuits by considering some benchmarks.
- The proposed design of Sigma-Delta Modulator and its individual components of it can be used for the design of Sigma-Delta ADC.
- The comparison and evaluation of existing analog Circuit simulators is performed.
- In principle can be extends for a new Circuit Simulators.



