Chroma-Sense: A Memory-Efficient Plant Leaf Disease Classification Model For Edge Devices

Presenter: Kiran Kumar Kethineni

Kiran Kumar Kethineni¹, Samuel Y. Wu², Saraju P. Mohanty³, E. Kougianos⁴

University of North Texas, USA.

Email: kirankumar.kethineni@unt.edu¹, samuelwu@my.unt.edu², saraju.mohanty@unt.edu³, elias.kougianos@unt.edu⁴

Outline

The Big Picture

- Novel Contributions
- Related Works
- Proposed Solution
- Implementation and Results

```
Conclusions and Future Work
```


Evolution of Smart Agriculture

 Manual labor, experience-based decision-making, simple tools. Precision Agriculture

sensors, and data analytics for automation.

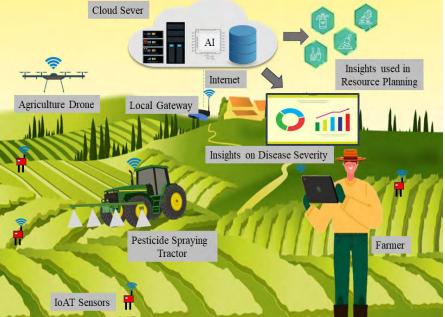
Green Revolution

 Synthetic fertilizers, pesticides, high-yield crop varieties. Smart Agriculture

 IoT, big data analytics , and machine learning.

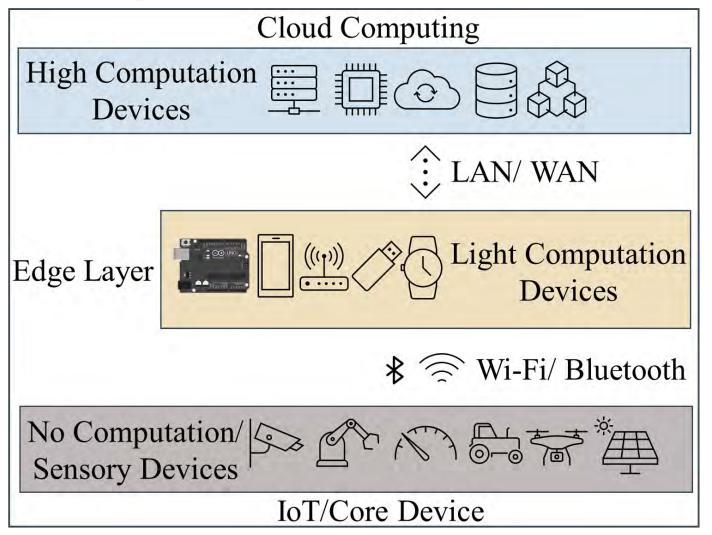
Agricultural Cyber-Physical Systems (ACPS)

- ACPS: A system that integrates physical entities, sensors, and digital technologies for real-time monitoring and control of agricultural processes.
- Plant diseases lead to economic losses, need timely intervention.
- ACPS facilitates early disease detection using computer vision.
- Continuous monitoring via ACPS allows for effective damage control.

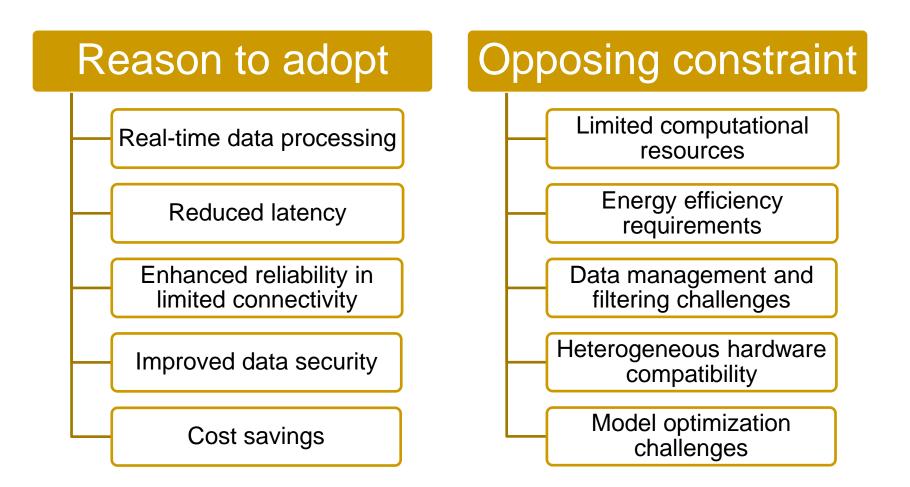


Disease management ACPS

3 Layered structure of IoT



Edge Computing – The Challenge



6

Related Works

Work	Year	Method adopted	Remark
Mohanty et al.	2016	AlexNet, GoogLeNet	Models are generic and not optimized for edge devices.
Archana et al.	2023	ResNet-50	Models are generic and not optimized for edge devices.
Peker	2021	Multi channel network ensemble	Cumulative features across R,G,B channels are not considered.
Rakib et al.	2024	A reduced CNN model with layer quantization	Layers are reduced and optimized for edge devices, but not the architecture.

Related Works

Work	Year	Method adopted	Remark
Bedi and Gole	2021	Convolutional auto- encoder	Optimized for plant diseases but limited to binary classification.
Chowdhury et al.	2021	EfficientNet	Models are optimized for edge devices but not for plant diseases.
Ashwinkumar et al.	2022	MobileNet	Models are optimized for edge devices but not for plant diseases.
Chroma-Sense	2025	MobileNet style parameter reduction with serial multi channel processing	Models are optimized for edge devices and for plant diseases.

Proposed Solution

- Plant diseases typically manifest as spots, patches, textures on leaves, often characterized by distinct colors.
- Their distinguishing features are relatively simple, with different colors
 - Patches
 - Mosaics
 - Powdery textures
 - Velvety surfaces
- Chroma-Sense

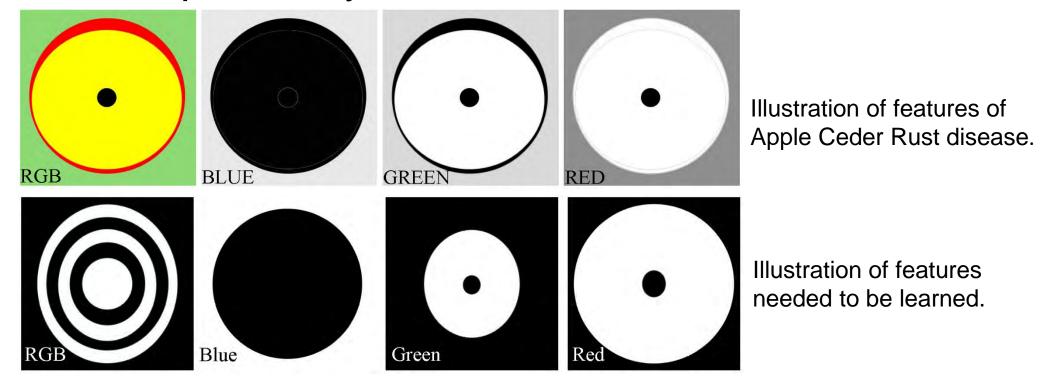
Leaf curls

Circles

Stripes

Proposed Solution

 Since the features are simple and same across different colors, they can be simple CNN network, processing R,G,B independently.



Novel Contributions

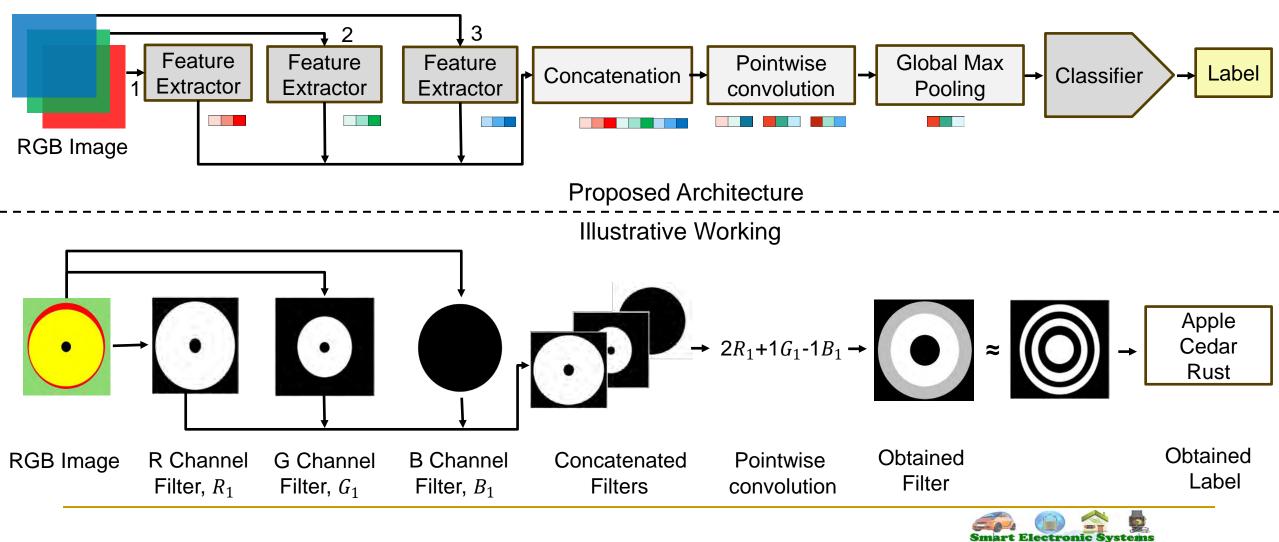
Memory Efficiency: Processing the R, G, and B channels in the image individually and sequentially reduces the width of the CNN model, significantly decreases the RAM required.

Reduction in parameter count: The reuse of the CNN feature extractor across all color channels, reduces the parameter count.

Simplified Semantic Feature Extraction: As the CNN network processes grayscale images of each channel, it is compelled to learn shapes and textures.

Explainability: By extracting channel-specific features and stacking them for classification, spatial information is embedded, making the decisionmaking process transparent and explainable.

Proposed Method

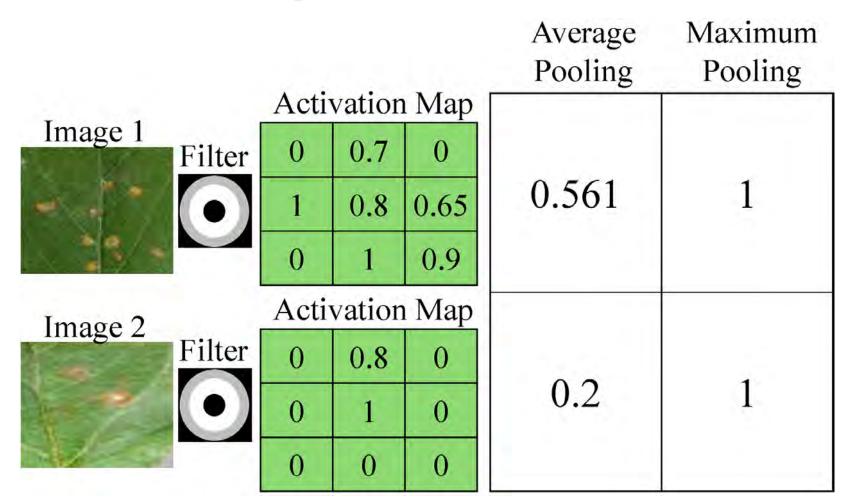


Chroma-Sense

Laboratory (SES

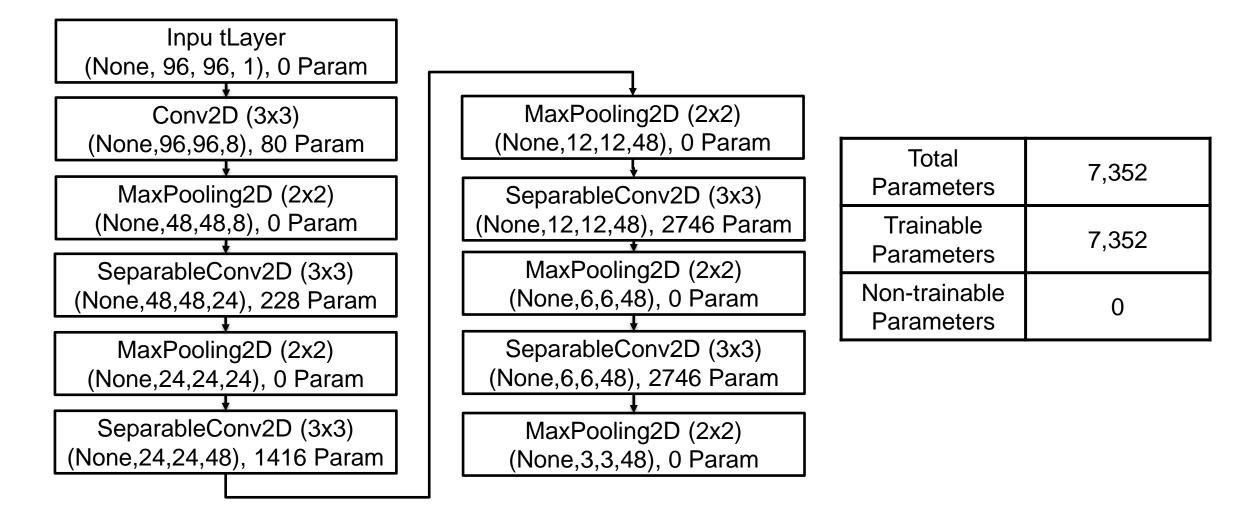
UNT DEPARTMEN

Proposed Method



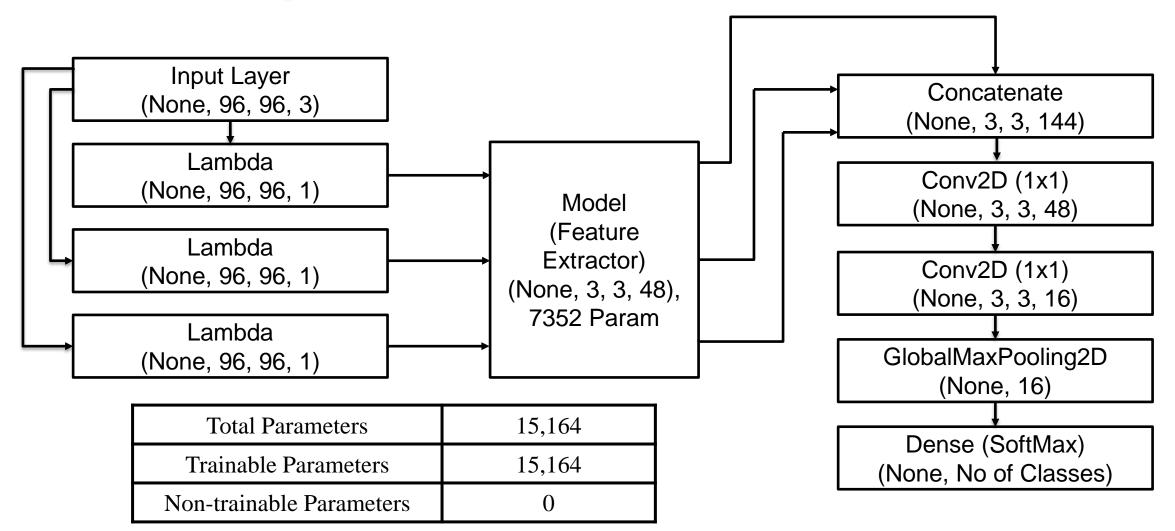
Comparison between average and max pooling.

Proposed Feature Extractor

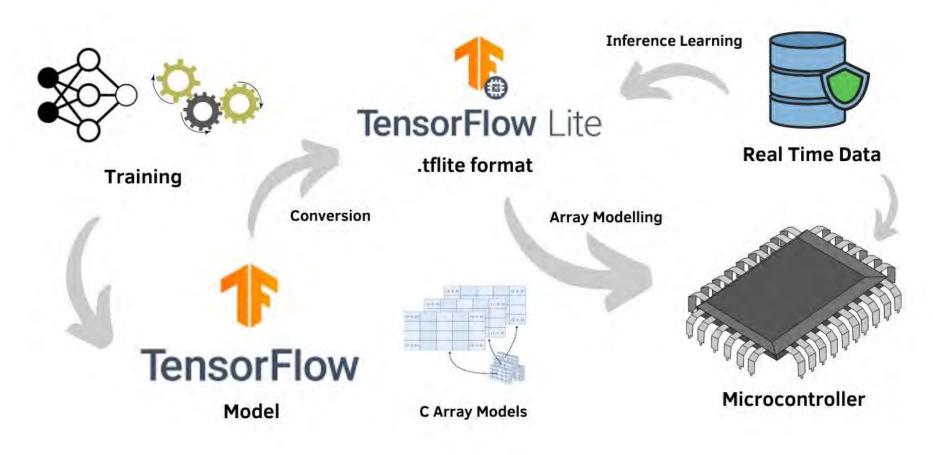


14

Proposed Classification Model



- The proposed Chroma-Sense was developed using Python and TensorFlow for the CNN classification model.
- TensorFlow Lite used to quantize the model to Int8.
- It was individually validated on 4 plant types, using a total of 18,000 images across 18 classes from the PlantVillage dataset.
- The results of the developed models, tested on 3 different edge devices : OpenMV H7, OpenMV H7 Plus, Arduino Nicla Vision.

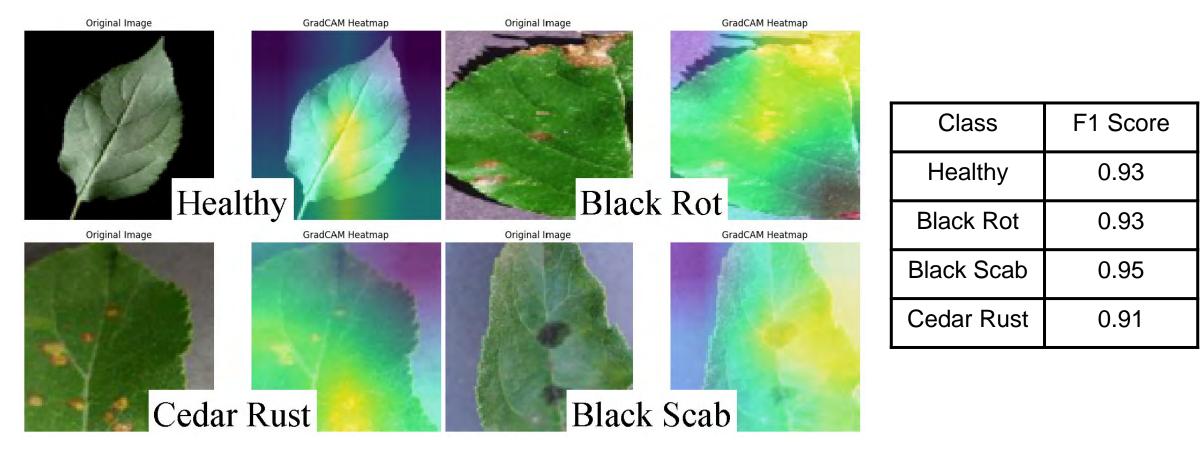


The TensorFlow Lite Micro workflow. Image used courtesy of Saumitra Jagdale

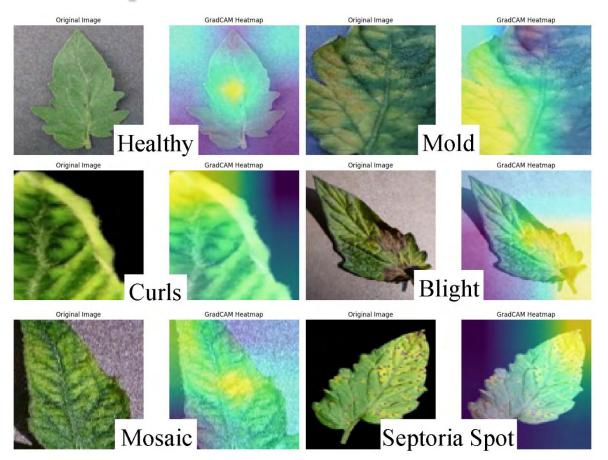
17

With background No background Black background Highlighting edge

Dataset created for training

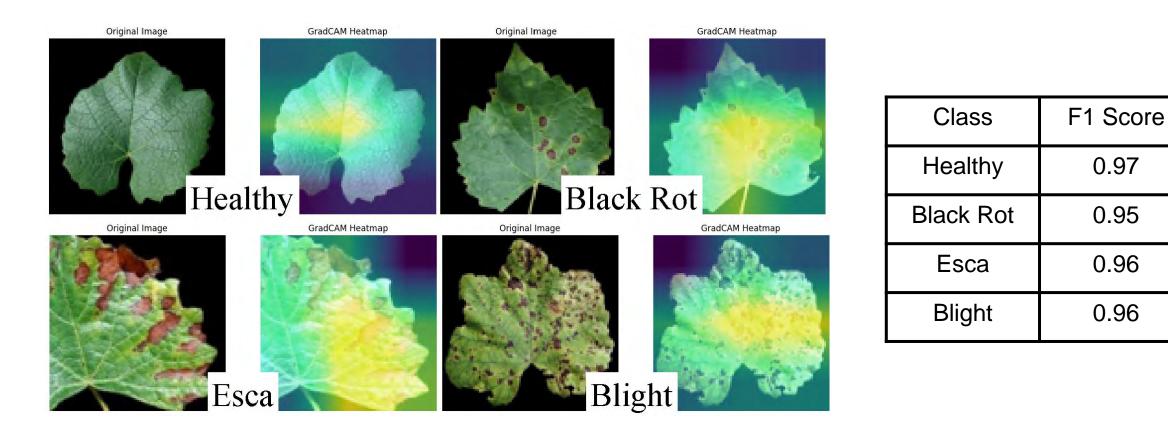


Grad-CAM results for Apple Dataset (Unoptimized Model) 93% Accuracy (TFLite, Int8)



Class	F1 Score		
Healthy	0.90		
Mold	0.88		
Curls	0.88		
Blight	0.91		
Mosaic	0.90		
Septoria Spot	0.87		

Grad-CAM results for Tomato Dataset (Unoptimized Model) 89% Accuracy (TFLite, Int8)



Grad-CAM results for Grape Dataset (Unoptimized Model) 96% Accuracy (TFLite, Int8)

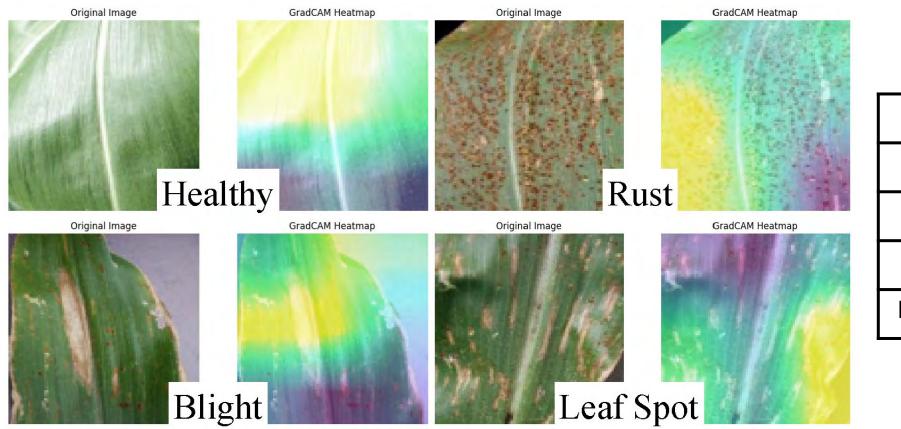
Chroma-Sense

0.97

0.95

0.96

0.96



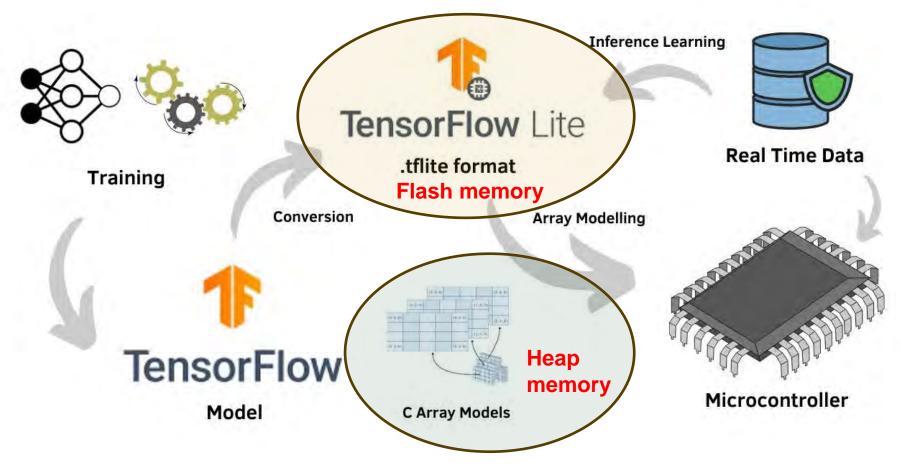
Class	F1 Score
Healthy	0.94
Rust	0.91
Blight	0.92
Leaf Spots	0.95

Grad-CAM results for Corn Dataset (Unoptimized Model) 93% Accuracy (TFLite, Int8)

May 05, 2025

Edge Device	Heap Memory	Flash Memory	Processor
OpenMV H7	256KB	128KB	Cortex-M7
OpenMVH7 Plus	4MB	32MB	Cortex-M7
Arduino Nicla Vision	256KB	16MB	Cortex-M7 + Cortex-M4





The TensorFlow Lite Micro workflow. Image used courtesy of Saumitra Jagdale

Model	Acc.Int8		RAM Flash Memory	Paramet er	Madds	Frames/Sec			
	Apple	Tomato			Count		H7	H7 Plus	Nicla Vision
Conv2D	95.2	88.8	336KB	502KB	491K	130M	NA	1.7	NA
Grouped Conv	86.4	71.7	336KB	187KB	169K	43M	NA	4.5	NA
MobileNet	86.7	86.6	341KB	99KB	66K	21M	NA	5.3	NA
MobileNetV2	95.4	90.4	271KB	203KB	153K	25M	NA	7	NA
MobileNetV3	<mark>92.8</mark>	<mark>92.6</mark>	<mark>216KB</mark>	<mark>138KB</mark>	<mark>97K</mark>	<mark>20M</mark>	NA	<mark>5.3</mark>	<mark>7.6</mark>
EfficientNetV2	91.8	88.6	240KB	160KB	110K	27M	NA	5.1	6.9
SqueezeNet	97.2	83.5	338KB	80KB	56K	23M	NA	6.4	NA
ShuffleNet	90.2	83	347KB	129KB	88K	13M	NA	2.3	NA
Sque. and Exci.	82.2	79.1	149KB	550KB	527K	32M	NA	5.6	NA
Multi.Ch. CNN	88.8	86.1	160KB	87KB	62K	43M	4.7	4.7	4
Chroma-Sense	<mark>93.1</mark>	<mark>89.3</mark>	<mark>160KB</mark>	<mark>54KB</mark>	<mark>15K</mark>	<mark>8.3M</mark>	<mark>8.4</mark>	8.4	<mark>7.2</mark>

May 05, 2025

Chroma-Sense

Smart Electronic Systems Laboratory (SESL)

Model	Enhancement				
Conv2D	Standard Conv2D layers with no optimization.				
Grouped Conv	Reduced parameters through group convolution.				
MobileNet	Reduced parameters, RAM by using depthwise separable convolution.				
MobileNetV2	Improved expressive power while reducing feature map size and memory usage.				
MobileNetV3	Attention mechanisms helped reduce feature maps and memory usage, parameters.				
EfficientNetV2	Fused-MBConv improved training speed and increased computations.				
SqueezeNet	Fire modules reduced parameters but required more memory for expansion.				
ShuffleNet	Feature cross-talk improved expressive power and reduced parameters, but did not save memory.				
Sque. and Exci.	Attention mechanisms enhanced expressive power and reduced memory usage, but higher computations.				
Multi.Ch. CNN	Serial processing helped reduce memory usage, parameters, and computational requirements.				
Chroma-Sense	Reduced memory usage, parameters, and computations with serial processing and separable convolutions.				

Chroma-Sense

Conclusion and Future Work

- Chroma-Sense is designed for 96x96 images and performs classification based on features within the receptive field.
- This low resolution may fail to capture fine details in images with multiple leaves or crops.
- It fails to capture global leaf-level features, leading to misclassification when multiple plant types are present in the dataset.
- Future work should focus on enhancing the feature extractor's representational power and designing efficient memory allocation algorithms to handle higher resolutions.

Thank You !!

28

May 05, 2025