Fortified-Edge 4.0: A ML-Based Error Correction Framework for Secure Authentication in Collaborative Edge Computing

Presenter: Venkata P. Yanambaka

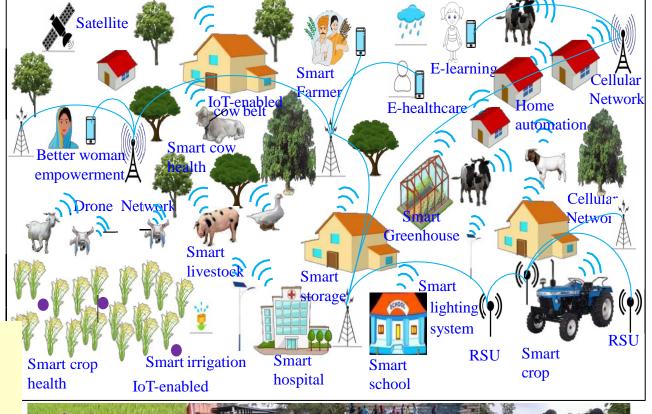
Seema G. Aarella¹, Venkata P. Yanambaka², Saraju P.Mohanty³, Elias Kougianos⁴

University of North Texas, Denton, TX 76203, USA.^{1,3,4} Texas Woman's University, Denton, TX, USA.²

Email: Seema.Aarella@unt.edu¹, vyanambaka@twu.edu², Saraju.Mohanty@unt.edu³ and Elias.Kougianos@unt.edu⁴

Outline of the Talk

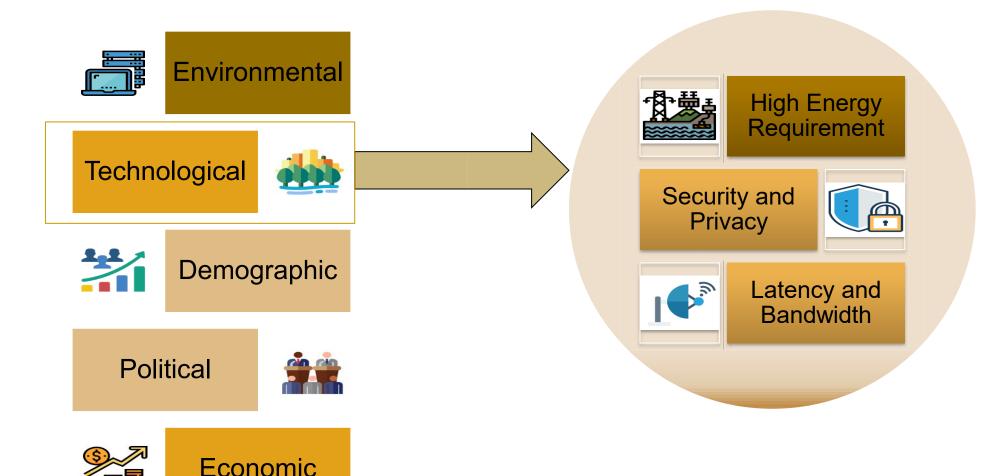
- Introduction
- Smart Cities and Smart Villages
- Need for Security-by-Design
- Novel Contributions
- Fortified-Edge Ecosystem
- Proposed Fortified-edge 4.0
- Experimental Setup
- Results and Analysis
- Conclusions


Smart Cities Vs Smart Villages

Source: http://edwingarcia.info/2014/04/26/principal/

Smart Cities
CPS Types - More
Design Cost - High
Operation Cost - High
Energy Requirement - High

Smart Villages
CPS Types - Less
Design Cost - Low
Operation Cost - Low
Energy Requirement - Low

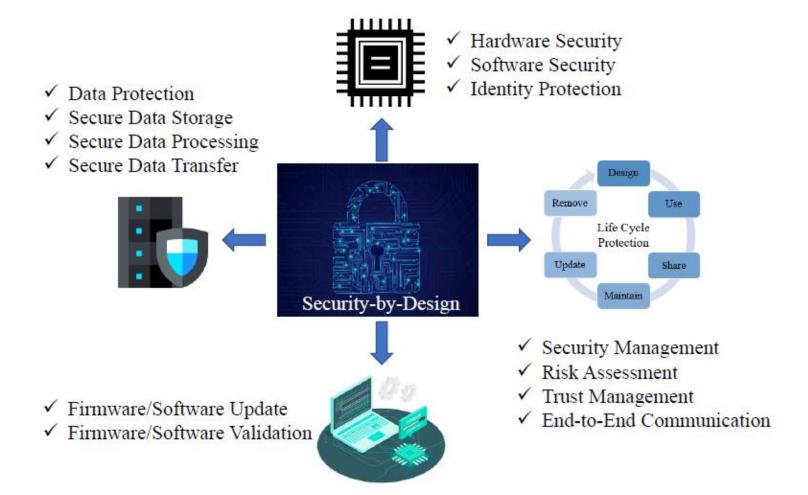


Source; P. Chanak and I. Banerjee, "Internet of Things-enabled Smart Villages: Recent Advances and Challenges," *IEEE Consumer Electronics Magazine*, DOI: 10.1109/MCE.2020.3013244.

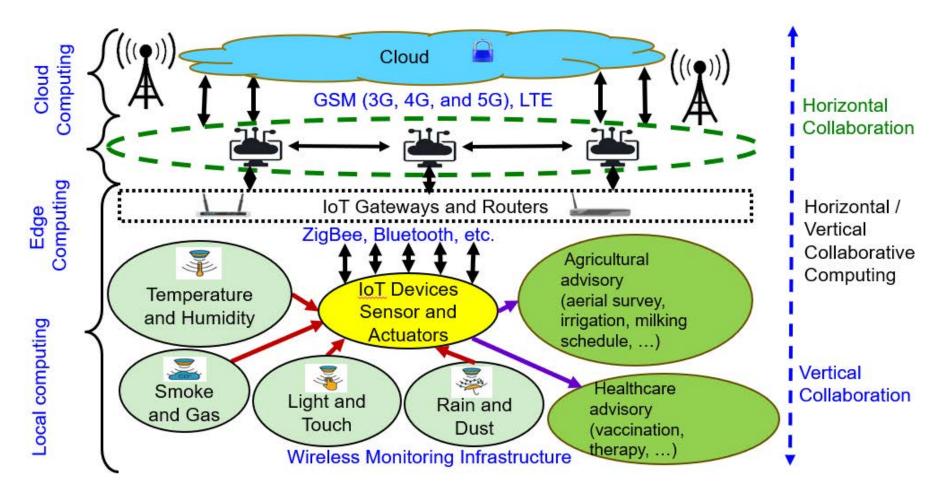
Challenges of Smart Village

Security-by-Design (SbD)

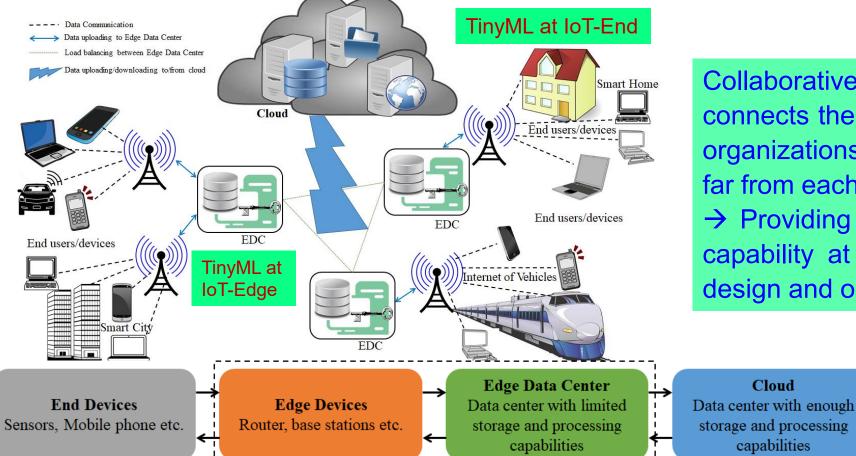
 Integration of the cybersecurity early in the design phase, not retrofitted


 Device, circuit, and systemlevel cybersecurity solutions for robust CPS and smart component design

- 1 PROACTIVE NOT REACTIVE; PREVENTATIVE NOT REMEDIAL
- 2 PRIVACY AS A DEFAULT SETTING
- 3 PRIVACY EMBEDDED INTO DESIGN
- 4 POSITIVE-SUM, NOT ZERO-SUM
- 5 END-TO-END SECURITY FULL DATA LIFECYCLE PROTECTION
- 6 VISIBILITY AND TRANSPARENCY- KEEP IT OPEN
- 7 RESPECT FOR USER PRIVACY- KEEP IT USER-CENTRIC


Image Source: https://dataprivacymanager.net/seve-principles-of-privacy-by-design-and-default-what-is-data-protection-by-design-and-default/

Security-by-Design (SbD)


Collaborative Edge Computing (CEC)

Source: D. Puthal, S. P. Mohanty, S. Wilson and U. Choppali, "Collaborative Edge Computing for Smart Villages", *IEEE Consumer Electronics Magazine (MCE)*, Vol. 10, No. 03, May 2021, pp. 68-71.

Collaborative Edge Computing is Cost Effective Sustainable Computing for Smart Villages

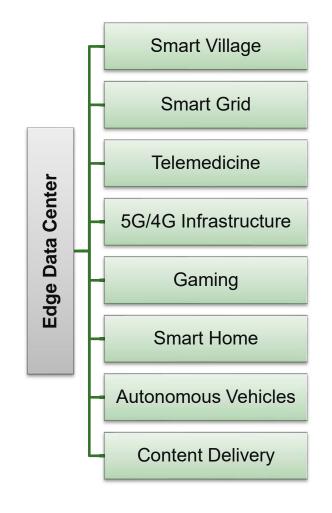
Collaborative edge computing connects the IoT-edges of multiple organizations that can be near or far from each other

→ Providing bigger computational capability at the edge with lower design and operation cost.

storage and processing

Source: D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y. Zomaya, "Secure and Sustainable Load Balancing of Edge Data Centers in Fog Computing", IEEE Communications Mag, Vol. 56, No 5, May 2018, pp. 60--65.

Collaborative Edge Computing (CEC)

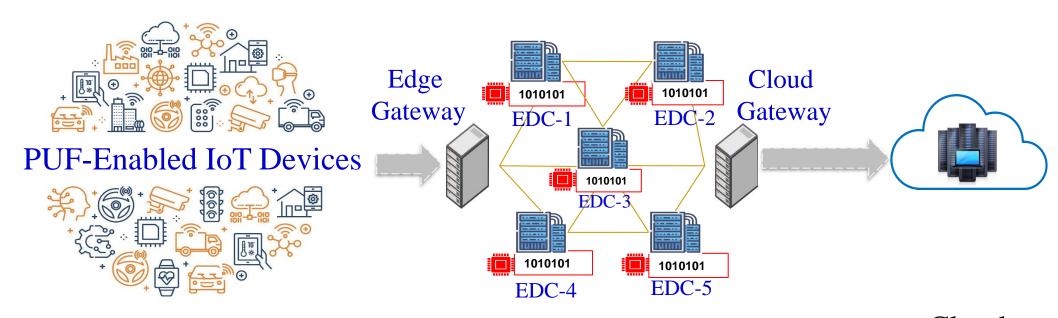

Collaborative Edge Computing is a distributed processing environment

CEC is a collaboration of distributed edge

Smart control of heterogenous network

Reduced Bandwidth and Transmission costs

CEC enables seamless processing through load balancing



((m))

Secure Authentication of EDC in CEC

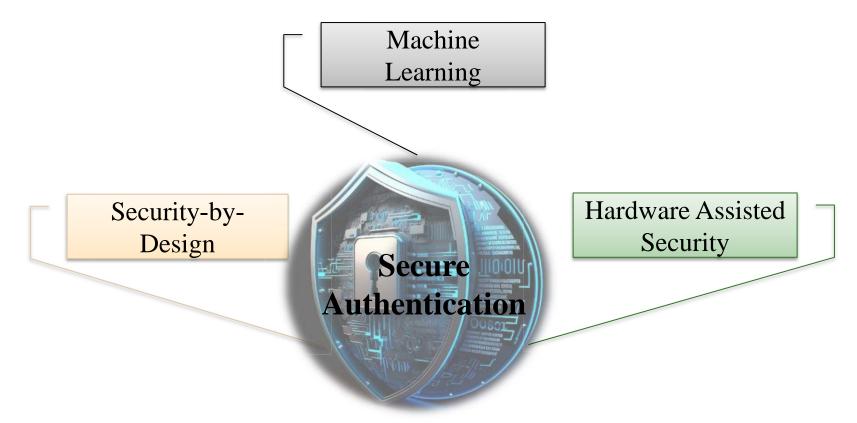
Load Balancing in Collaborative Edge Computing

Edge Intelligent Device Layer

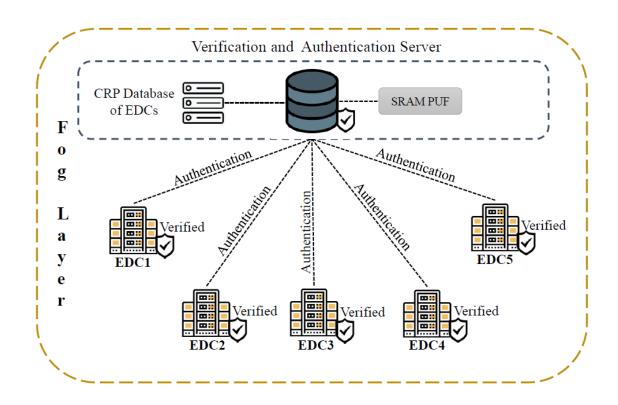
Edge Infrastructure

Cloud Infrastructure

Long-term Vision

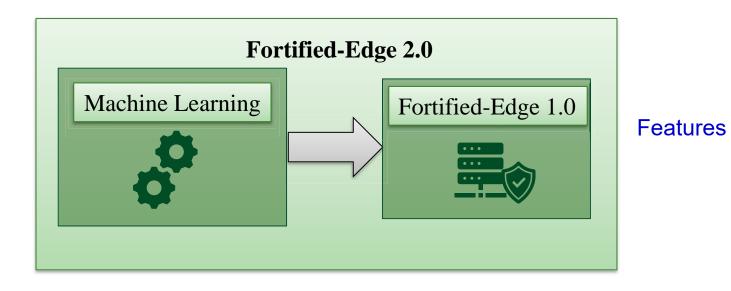


AI/ML for Cybersecurity in Smart Villages

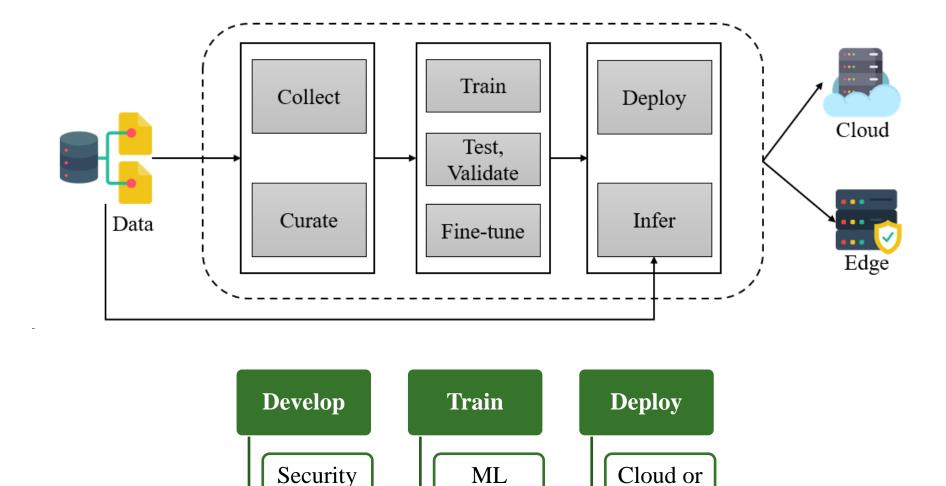

Our Fortified-Edge: The Key Idea

 A lightweight and Secure Authentication scheme for EDCs during load balancing in the CEC environment of smart villages

Fortified-Edge 1.0 - The Idea

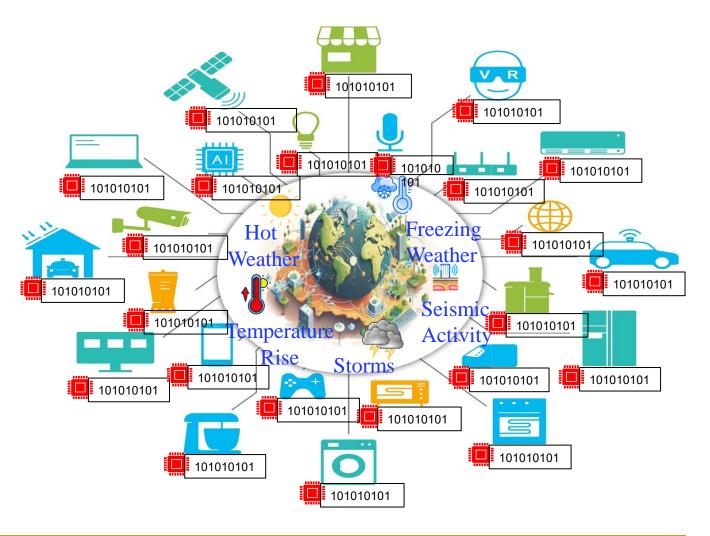

- □ CEC enables applications in smart villages through load balancing
- To develop a secure authentication protocol for Load balancing
- Suitable for a smart village environment
- Incorporate Security-by-Design for smart and sustainable security

Source: S. G. Aarella, **S. P. Mohanty**, E. Kougianos, and D. Puthal, "<u>Fortified-Edge: Secure PUF Certificate Authentication Mechanism for Edge Data Centers in Collaborative Edge Computing</u>", in *Proceedings of the ACM Great Lakes Symposium on VLSI (GLSVLSI)*, 2023, pp. 249--254, DOI: https://doi.org/10.1145/3583781.3590249


Fortified-Edge 2.0 - The Idea

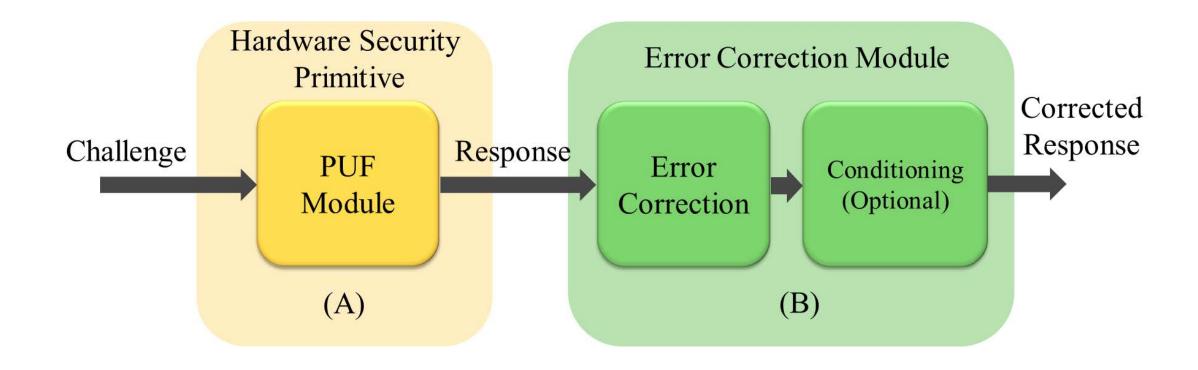
- Secure, Low Latency Authentication
- Device identification
- Intrusion detection
- Attack Prevention
- EDC Monitoring
- Resilient against malicious Requests
- ML model suitable for a smaller dataset

Fortified Edge 3.0 Machine Learning for Edge


System

Models

Edge


Fortified- Edge 4.0 - Motivation

- Environmental effects on PUF
- Bit flipping in PUF response affects the performance
- ➤ Bit errors reduce the reliability
- Security applications need reliable PUF

PUF Security Model for Bit Error Correction

Related Prior Research

Research	Year	ML Algorithm	Application
Upadhyaya et. al. [20]	2019	Natural Redundancy decoders based on Machine Learning	Error Correction
Suragani et. al. [19]	2022	Proof-of-Concept using CNN	Classification of corrupted PUF responses
Chatterjee et. al. [5]	2020	Random Forest based PUF Calibration scheme	Validate sensor data
Najafi et. al. [14]	2021	Deep CNN	Recognize PUF responses under error conditions
Wen et. al. [21]	2017	Fuzzy Extractor	PUF reliability
Current Research Fortified-Edge 4.0	2024	K-mer Sequence	PUF bit error correction

Novel Contributions of Current Research

Novel machine learning method for bit error detection and correction

Data preprocessing done through visualization, data cleaning

Sequencing methods used in DNA sequencing and Natural Language Processing (NLP)

Vectorization of the sequences

MultinomialNB for classification

A deployable working model that can predict the correct response from the response with an error

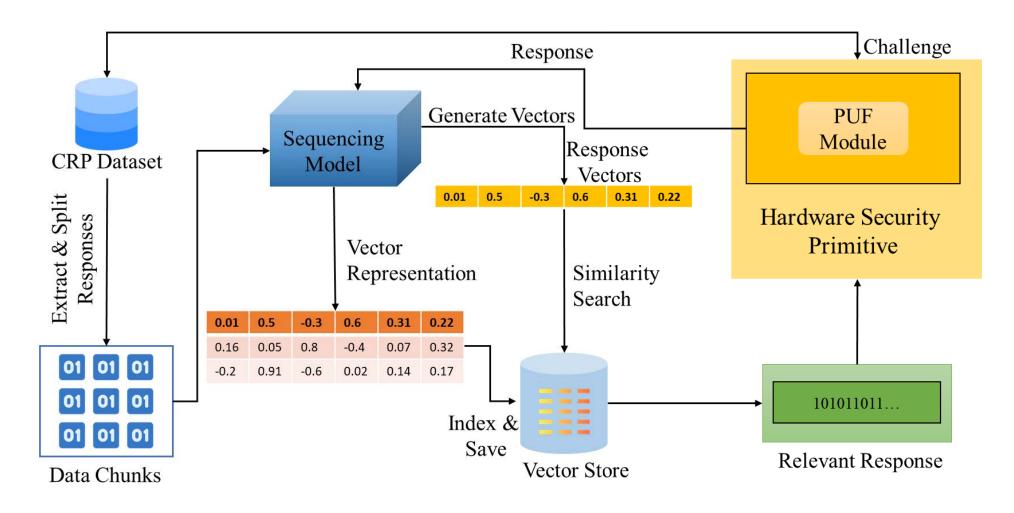
Problems Addressed and Solutions Proposed

Problems Addressed

- Area overhead added by the bit error correction module
- Computational overhead
- Extensive error correction schemes do not suit the lightweight aspect of the security system
- Data leakage issues related to helper data in schemes that use helper bits
- Secure storage of the helper data, an added feature making the design complex

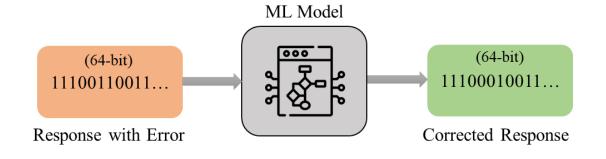
Solutions Proposed

- The area overhead and computational overhead are low as the trained model is used at the device end
- There is no need to store the helper data
- Helper data leakage is not an issue as the trained model is deployed at the device end
- The ML model is highly accurate in correcting the erroneous response bits

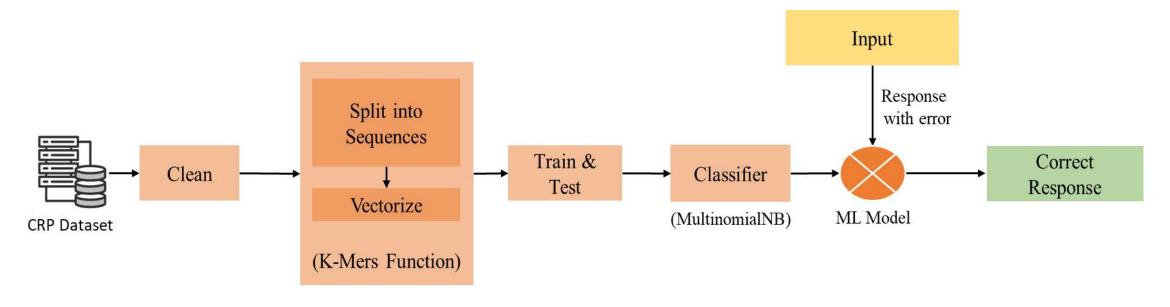


Fortified-Edge Research

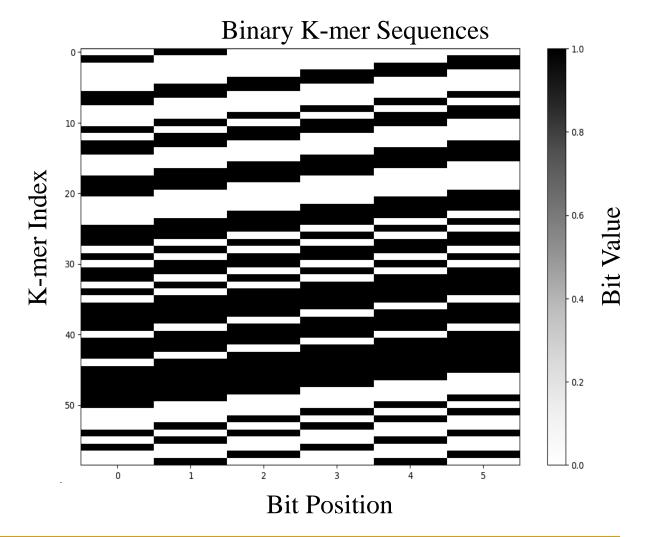
Research	Algorithm	Application	Accuracy
Fortified-Edge 1.0 [4]	SRAM PUF-based Certificate	EDC Authentication	NA
Fortified-Edge 2.0[3]	SVM	ML-based Authentication & Monitoring	100.0
Fortified-Edge 3.0[1]	Lightweight ML models	Anomaly & Intrusion detection	99.33
Current Research Fortified- Edge 4.0	K-mer Sequence	PUF Response Bit Error Correction	99.74


PROPOSED FORTIFIED-EDGE 4.0

22

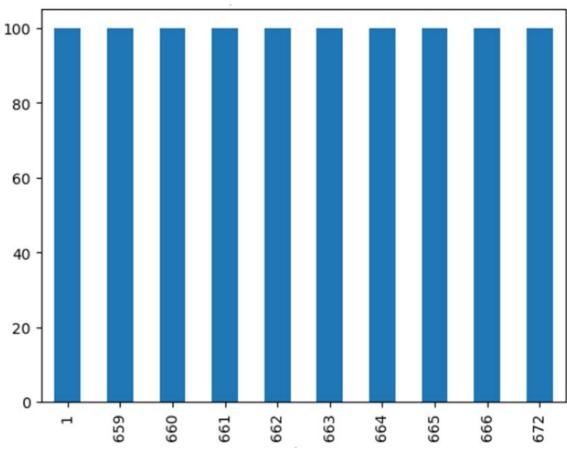

Experimental Setup

- This research uses the 64-bit Arbiter PUF architecture
- PUFs. PYNQ™ Z2 FPGA which is based on Xilinx Zynq C7Z020 SoC used for PUF implementation
- Xilinx BASYS3 FPGA used to build PUF
- Raspberry Pi 4 to test the trained model
- Uniqueness, Randomness, and Hamming Distance are used to measure the performance of PUF
- Precision, Recall, Accuracy, and F-1 Score are the metrics used for the performance of the ML model


Process Flow

- The performance of the arbiter PUF 49.52% Uniqueness, 86.85%
 Randomness, and 45.67% inter-HD
- Dataset 100K Responses, 1000 Challenges, 100 Responses for each Challenge
- Dataset includes responses with error, 80% training set, 20% testing set

Experimental Results


- K-mers size of 6 applied on string data generates 51 unique sequences
- 511 features are generated from 100K data
- The visual representation of the K-mer sequences helps to study the pattern distribution
- Examine bit positions for diversity, consistency, and other structural information

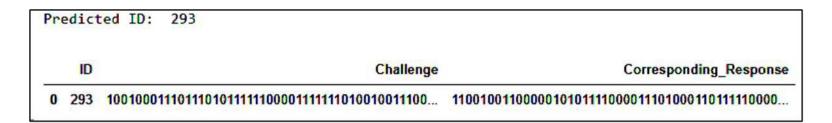
Experimental Results

Top 10 classes count

Number of response groups identified by the classifier

- 100K data initialized as string
- The algorithm identifies 100 classes
- Group the responses into unique classes

[1000 rows x 1000 columns]										
Actual	554	958	47	164	309	397	498	883	24	118
Actual										
554	33	0	0	0	0	0	0	0	0	0
958	0	32	0	0	0	0	0	0	0	0
47	0	0	31	0	0	0	0	0	0	0
164	0	0	0	3 1	0	0	0	0	0	0
309	0	0	0	0	31	0	0	0	0	0
397	0	0	0	0	0	3 1	0	0	0	0
498	0	0	0	0	0	0	3 1	0	0	0
883	0	0	0	0	0	0	0	31	0	0
24	0	0	0	0	0	0	0	0	30	0
118	0	0	0	0	0	0	0	0	0	30


Experimental Results

Predicted Class: 293

Actual Class: 293

The result of the algorithm shows the input response and corrected response

The result shows the corresponding challenge to the corrected response

Analysis of Results

- The trained model is deployed on Raspberry Pi 4 and both training and prediction analysis are done
- The algorithm is evaluated for accuracy, precision, recall, and F1-score, for each of the metrics it gives 100% results
- Coverage Rate gives insights into the percentage of unique K-mers in the dataset, increasing the size of the K-mers it was observed that the coverage rate increases significantly
- Test for overfitting KFold cross-validation was done
- The cross-validation scores 99.78%, 99.74%, 99.70%, 99.75%, 99.73%, with a mean accuracy of 99.74%

Analysis of Results

- The process of training and prediction of new data is analyzed for time and power consumed
- Raspberry Pi 4 used as an edge device for training and prediction
- Processing speed 13.15 sequences per second
- Processing Power 0.28 sequences per character
- Idle Power of Raspberry Pi 4 3.4-3.6 Watts

	Time(s)	Power (W)
Training	30.63	4.6-4.7
Prediction	0.08	4.1

Comparative Table for State-of-the-Art Literature

Research	Year	Algorithm	Accuracy
Upadhyaya et. al. [20]	2019	Natural Redundancy decoders based on Machine Learning	NA
Suragani et. al. [19]	2022	Proof-of-Concept using CNN	97.34
Chatterjee et. al. [5]	2020	Random Forest based PUF Calibration scheme	90.00
Najafi et. al. [14]	2021	Deep CNN	94.90
Wen et. al. [21]	2017	Fuzzy Extractor	98.00
Current Research Fortified- Edge 4.0	2024	K-mer Sequence	99.74

Conclusion

- This research proposes a novel K-mer sequence-based bit error detection and correction algorithm for correcting the PUF responses
- The stability of the PUF response increases the reliability of the PUF when employing it in security and cryptographic applications
- The power and time analysis proves that the ML model is low power consuming, and faster in processing
- Suitable for EDC Authentication in resource-constrained environments at the edge
- The multinomialNB classifier used is fast and computationally efficient

Future Research

- For future research, we are considering using this reliable
 PUF architecture for deepfake detection or prevention
- This PUF module can be used as a device authenticator if installed in the camera module to identify the device
- The machine learning model can be used as a verifier for the images generated from the authorized device

Thank you!

