Detection of Deep-Morphed Deepfake Images to Make Robust Automatic Facial Recognition Systems

Presenter: Alakananda Mitra

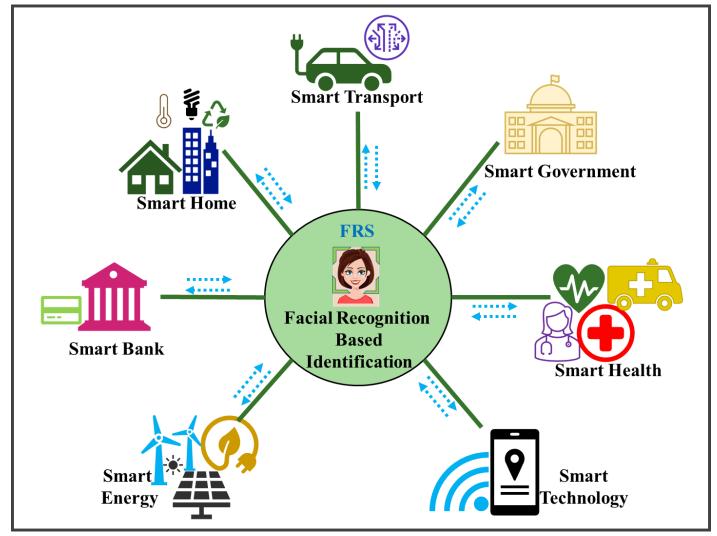
A. Mitra¹, S. P. Mohanty², P. Corcoran³, and E. Kougianos⁴
University of North Texas, Denton, TX, USA.^{1,2,4} and
National University of Ireland, Galway, Ireland³.

Email: alakanandamitra@my.unt.edu¹, saraju.mohanty@unt.edu², peter.corcoran@nuigalway.ie³, and elias.kougianos@unt.edu⁴

Outline

- Facial Recognition System
- Attacks on Facial Recognition System
- Deep-Morphed Deepfake Attack
- Proposed Solution
- Results
- Conclusions & Future Work

Identification of Individual in Smart City



Facial Recognition System (FRS)

- Facial Recognition System
 - Biometric based Identification System Unique to the User
- Non-invasive Identification System No Touching required
- Process of Identifying or Verifying the Identity of a Person using his/her Face
- Steps for FRS:
 - Face Detection: Detecting and Locating Human Faces in Images/ Videos
 - Face Capture: Changes Information (Features) of a face into a Set of Vectors
 - Face Match: Verifies if Two Faces are of the Same Person

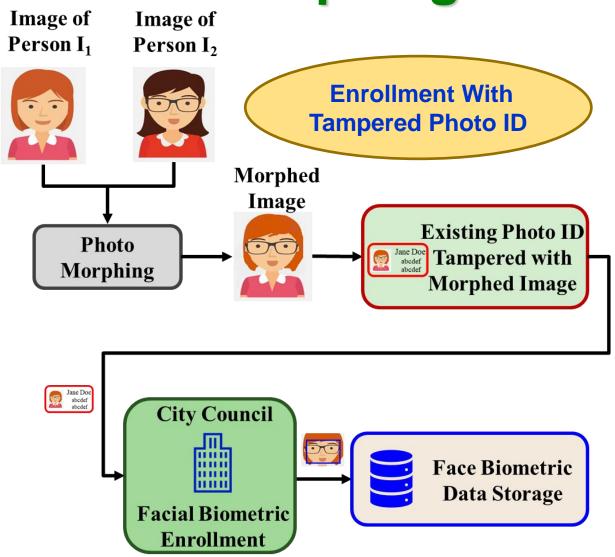
Attacks on FRS

- Susceptible to Attacks
 - Presentation Attack : A Biometric Spoof Detected when Presented to a Biometric Sensor
 - Indirect/Channel Attack : When Data Moves in the Network without Encryption
 - □ Face Morphing Attack (FMA) : Morphed Image
 - Traditional Landmark Points Based
 - Deep-Morphed Deepfake GAN Generated
 - (MorGAN, StyleGAN, FSGAN)

Deep-Morphed Deepfake

- Deepfake = Deep Learning + Fake
- Created by Deep Learning Networks
 - Generative Adversarial Networks (GANs)
- Sophisticated Images
- Make Face Morphing Easy and Realistic
- Rampant in Social Media and Websites
- Change the Perception of TRUTH
- Threat to Biometrics Based Facial Recognition Systems

Face Morphing Attack on FRS of Smart City



- Citizens Submit their Existing Photo ID to the City Council Office
- Hostile Person I1; Victim Person I2
- ID of Hostile Person I1 Tampered with Morphed Photo from Victim Person I2
- Photo of the ID Matched with the Hostile Person I1
- Registered in the FRS

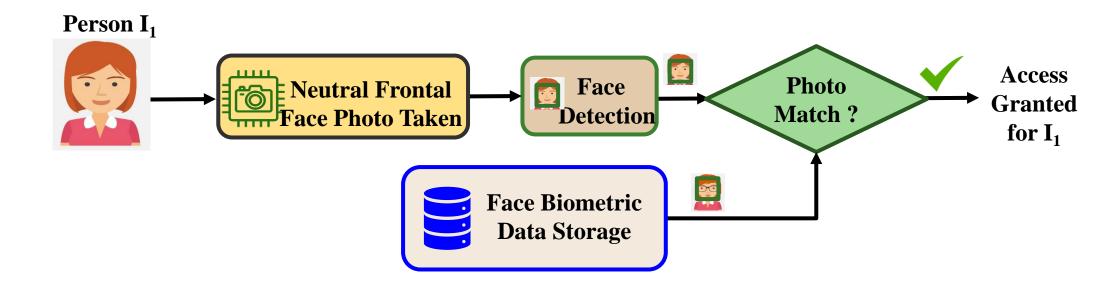
December 17, 2021

OCIT 2021 - Alakananda Mitra

OCIT 2021 - Alakananda Mitra

UNT SURFACION SUR

Face Recognition At Smart City Facility



- Hostile Person I1 comes to a Smart City Facility
- I1's Face matches with the Data Stored
- Gains Access to that Facility

Proposed Solution For The Problem

Problems

- Misuse of FRS
- Innocent People Victims
- Hostile People take Advantages

Solution Proposed

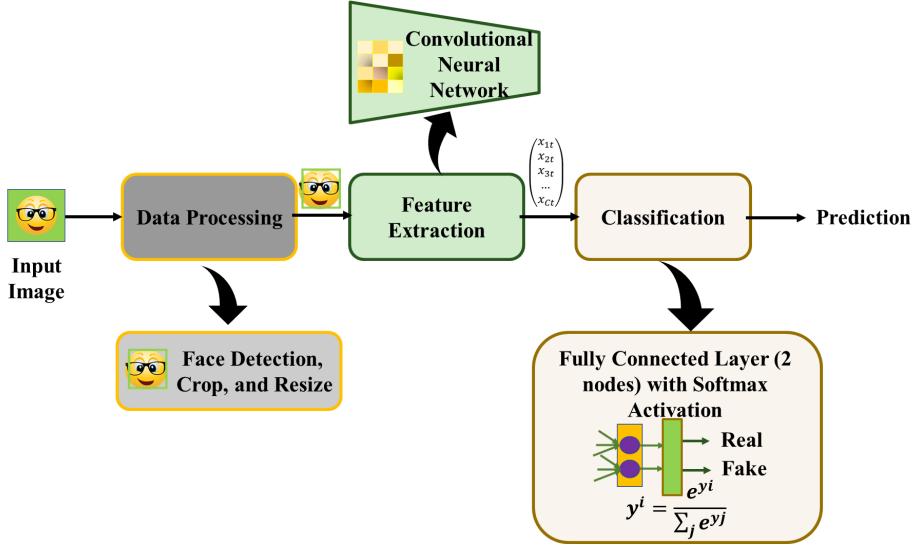
- CNN based network detects Deep-Morphed Deepfake Images
- Is used to detect images submitted for registration in FRS of smart cities
- Light Weight IoT friendly model, makes the Registration Process easy and not localized to Council Office

Related Works

Papers	Dataset	Methods	AUC/ACC
Matern et al. [2019]	DeepfakeTIMIT	Visual Aspects + Logistic Regression + MLP	Low
Yang et al. [2019]	DeepfakeTIMIT	Head pose + Facial expression + dlib + SVM	Low
Afchar et al. [2018]	DeepfakeTIMIT	Mesoscopic Features	High
Zhou et al. [2018]	DeepfakeTIMIT	Steganalysis + Deep learning feature	Low
Nguyen et al. [2019]	DeepfakeTIMIT	Capsule network	Low
Proposed Method [2021]	DeepfakeTIMIT	CNN based	Highest

10

CNN Based Detection Method



CNN Based Detection Method (Contd..)

- MobileNet V2 as Feature Extractor
- Depthwise Separable Convolution
- Linear Bottleneck between layers
- Shortcuts connect the bottleneck layers
- Last FC layer with ImageNet classes changed to a FC layer with softmax activation and two nodes

CNN Based Detection Method (Contd..)

- MobileNet V2 as Feature Extractor
- Depthwise Separable Convolution
- Linear Bottleneck between layers
- Shortcuts connect the bottleneck layers
- Last FC layer with ImageNet classes changed to a FC layer with softmax activation and two nodes

Datasets

Re	al	Fake		
Data source	# of Image	Data source	# of Image	
VidTIMIT	34,004	DeepfakeTIMIT (HQ)	33,988	
VidTIMIT	34,004	DeepfakeTIMIT(LQ)	34,025	

	# of Images			
Data		Fake		
Data	Real	DeepfakeTIMIT (HQ)	DeepfakeTIMIT(LQ)	
Train	23,873	23,939	23,965	
Validation	6,135	6,000	6,010	
Test	3,996	4,049	4,050	

DeepfakeTIMIT

- 32 subjects
- Total of 620 videos
- A lower quality (LQ) with 64x64 in/out size
- A higher quality (HQ)128x128 in/out size
- Fake image frame rate 25 fps

VidTIMIT

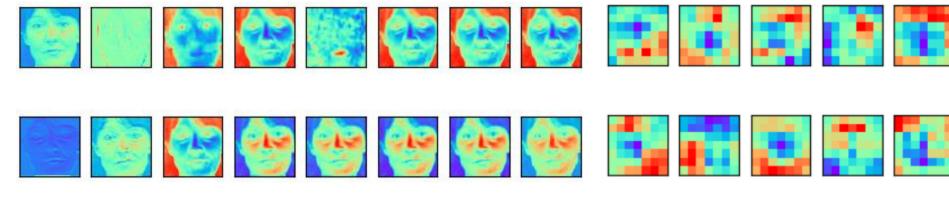
Same subjects' videos as DeepfakeTIMIT

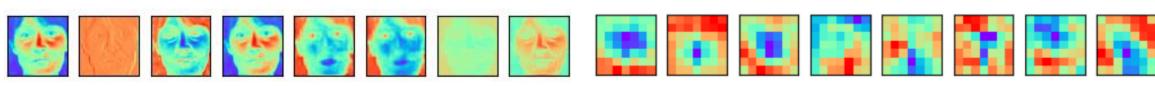
Implementation & Training Protocols

- Data Augmentation
- Transfer Learning
 - Accuracy Higher
 - Training Time Lower
- Feature Extractor kept frozen. Last FC layer trained for 10 epochs
- End-to-end network trained for 15 epochs
- Best model chosen from validation accuracy
- Same and Cross dataset evaluation
- Adam Optimizer learning rate 0.0002
- GeForce RTX 2060 laptop with GPU and 6GB shared memory+ 16GB total memory

Feature Visualization of MobileNet V2

Output of 32 Filters at Layer 2





Class Activation Map Visualization (GRAD-CAM)

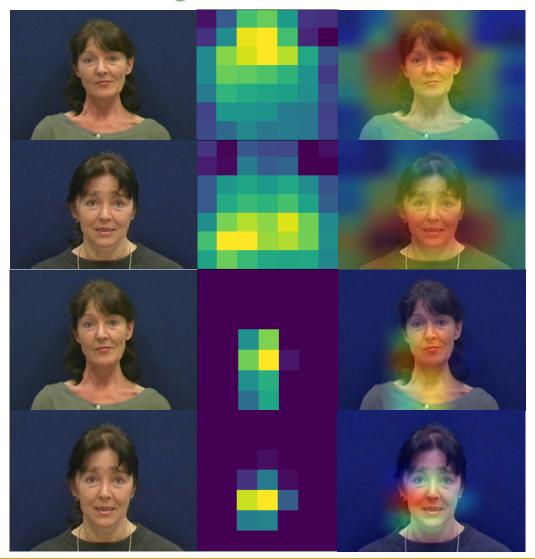
Real

Predicted Wrong

Fake

Real Predicted

Fake



Pretrained on ImageNet

Trained on DF-TIMIT HQ

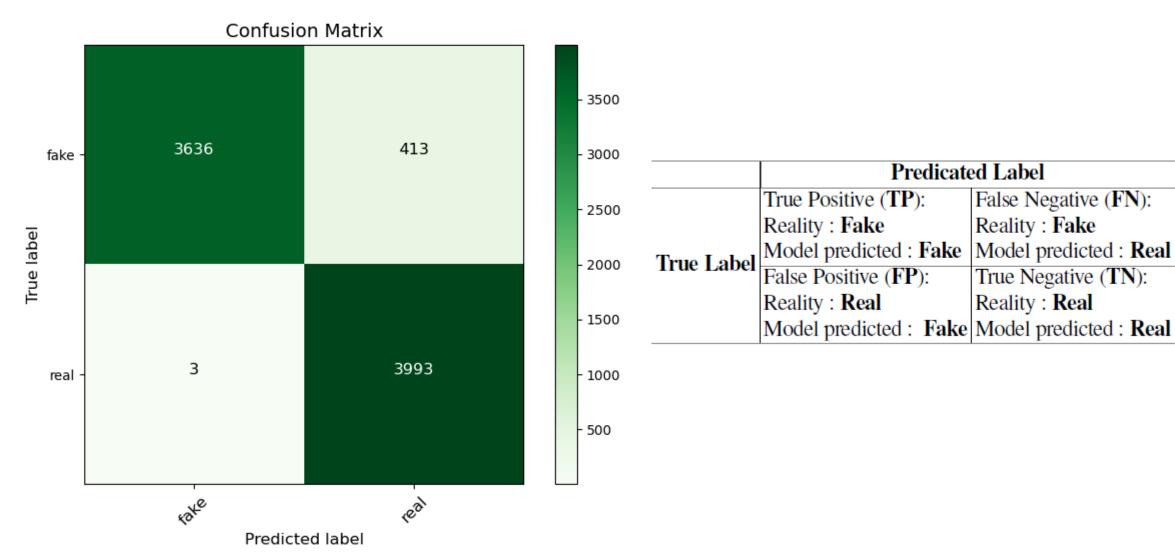
Correct

Accuracy & Inference Time

Training Dataset	Testing Dataset	Accuracy (%)	Inference Time (ms)
DeepfakeTIMIT (HQ)	DeepfakeTIMIT (HQ)	94.83	3.67
DeepfakeTIMIT(LQ)	DeepfakeTIMIT(LQ)	100.00	3.76
DeepfakeTIMIT (HQ)	DeepfakeTIMIT (LQ)	96.91	3.81
DeepfakeTIMIT(LQ)	DeepfakeTIMIT(HQ)	57.38	4.45

For Real images → VidTIMIT dataset

Confusion Matrix



19

Detection Metrices

Test Images	Precision (%)	Recall (%)	F1-score (%)	$Accuracy = \left(\frac{TP + TN}{TP + TN + FP + FN}\right) \times 100\%$
3,996 Real	100.0	90.0	95.0	$Precision = \left(\frac{TP}{TP + FP}\right) \times 100\%$
4,048 Fake	91.0	100.0	95.0	
Macro Average	95.0	95.0	95.0	$Recall = \left(\frac{TP}{TP + FN}\right) \times 100\%$
Weighted Average	95.0	95.0	95.0	$F1-score = \left(\frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}\right) \times 100\%$
Total 8,044	Accuracy (%)	9	5.0	$\left(\frac{1}{Precision} + \frac{1}{Recall}\right)$

Performance Comparison

Papers	PERFORMANCE (%) For DF-TIMIT LQ	PERFORMANCE (%) For DF-TIMIT HQ
Matern et al. [2019]	AUC = 77.00	AUC = 77.30
Yang et al. [2019]	AUC = 55.10	AUC = 53.20
Afchar et al. [2018]	AUC = 87.80	AUC = 68.40
Zhou et al. [2018]	AUC = 83.50	AUC = 73.50
Nguyen et al. [2019]	AUC = 78.40	AUC = 74.40
Proposed Method [2021]	ACC = 100.00	ACC = 94.83

Conclusions & Future work

- Proposed a CNN based model for Detection of Deep-Morphed Deepfake images in context of Smart City facilities.
- Detected FSGAN generated images
- Light Weight model makes the Registration Process easy and not localized to Council Office
- High Accuracy
- As future work, generalizability of the model can be obtained

Thank You!!