Smart-Walk: An Intelligent Physiological Monitoring System for Smart Families

P. Sundaravadivel¹, S. P. Mohanty², E. Kougianos³, V. P. Yanambaka⁴, and M. K. Ganapathiraju⁵

University of North Texas, Denton, TX 76203, USA.^{1,2,3,4} University of Pittsburgh, Pittsburgh, PA, USA.⁵

Email: ps0374@unt.edu¹, saraju.mohanty@unt.edu², elias.kougianos@unt.edu³, vy0017@unt.edu¹, and madhavi@pitt.edu⁵

Outline of the talk

- Introduction and Motivation
- Novel Contributions
- Proposed Architecture for Smart Walk System in IoT
- System level design of Smart Walk System
- Implementation and experimental results
- Conclusions and Future research

Introduction

Smart healthcare empowers the users to self-manage emergency situations and keep them health-aware.

Introduction

✓ Internet of Things

- The Internet of Things is a network of devices where each device in the network is recognizable and connected.
- It can be thought of as the interconnection of uniquely identifiable smart objects and devices.

Introduction

Novel Contributions of This Paper

- 1. An architecture is proposed for vital sign monitoring in families.
- 2. A dynamic calibration module to improve the accuracy of the sensor design is proposed.
- 3. A feature based framework for human step-detection based on the learning parameters is proposed.
- 4. The algorithm is validated using a classifier which analyzes different learning parameters and dynamically calibrates the sensor system.

Framework of the Smart Walk System

✓ Ideal Components

- Sensor/transducer for data acquisition.
- Algorithms
- Information sharing
- Assistance to users

Fig. 2. Framework of the Smart walk system

Smart-Walk Talk, ICCE 2018

Proposed method for Efficient Parameter Estimation

System level design of Smart Walk System

- Feature extraction for data analysis
- Human Activity monitoring Algorithm

Feature extraction

✓ Accelerometer data

- X-axis \rightarrow twisting or turning
- Y axis \rightarrow leaning backward or forward
- Z-axis \rightarrow movement against gravity

✓ Features

- Kurtosis
- Mean
- Standard deviation
- Maxima and Minima
- Skewness

Human Activity Monitoring Algorithm

Step detection

Step length estimation

11

12th Jan 2018

Smart-Walk Talk, ICCE 2018

Human Activity Monitoring Algorithm

- Step length is measured from heel to heel
- Human step length estimation varies linearly in accordance to the walking frequency and accelerometer variance

Step length =
$$a.f + \beta.v + \gamma$$

> f \rightarrow walking frequency > v \rightarrow Variance of the accelerometer > $\alpha \beta$ and $\gamma \rightarrow$ pre-learned parameters

Implementation & Validation

- Sensor Design
- Classifier evaluation using WEKA

Data for the Sensor System

 A public database consisting of 10291 instances of smartphone based human activity data was considered from Kaggle.

 These instances were grouped into six categories of activity: sitting, standing, walking, climbing downstairs, climbing upstairs, and laying.

Classifier evaluation using WEKA

 Waikato Environment for Knowledge Analysis (WEKA) helps in evaluating system using numerous algorithms.

• Whenever a user makes a data entry, an Attribute-Relation File Format (.arff) is created, which serves as input for WEKA.

Classifier evaluation for Kurtosis values using WEKA

Classifiers	Correlation Coefficient	Mean absolute error	Root Mean Squared error	Relative absolute error(%)	Root Relative Squared error (%)
SMO Regression	0.7795	0.1029	0.1956	44.8049	67.68
Gaussian Process	0.7979	0.1146	0.1742	49.90	60.28
M5 Rules	0.9741	0.0409	0.0657	17.82	22.72
Decision Table	0.9263	0.0619	0.11	26.94	38.07
Linear Regression	0.7979	0.1142	0.1741	49.71	60.27
Multilayer Perceptron	0.9645	0.0597	0.0868	26.00	30.03
Additive Regression	0.9273	0.0856	0.111	37.26	38.41

Kurtosis Analysis in WEKA

Kurtosis values in different postures from 3 different subjects

Smart-Walk Talk, ICCE 2018

Classifier evaluation for Minimum and Maximum Accelerometer values using WEKA

Classifiers	Mean Absolute error	RMS error
Input Mapped Classifier	0.0014	0.0018
SMO	0.222	0.3089
Decision Stump	0.2234	0.3342
Simple Logistic	0.0437	0.0587
Decision Table	0.0015	0.0002
Bayes Net	0.0009	0.3309
Multilayer Perceptron	0.0012	0.0016

Performance Comparison with Existing Research

Research Works	Method	Features considered	Activities	Accuracy (%)
Shin et al [21]	Awareness algorithm of movement status	Step length and total walking distance	Walk and run	96
Chien et al. [20]	Dynamic algorithm	Number of steps taken	Walking, jumping and jogging	95
This paper	Adaptive algorithm based on feature extraction	Step detection and Step length estimation	Walking, sitting, standing	97.9

Characterization Table for the Proposed System

Characteristics		
Sensor System	TIMSP432 launchpad integrated with Educational Booster Pack MKII	
Operating Frequency	48 MHz	
Sensor data acquisition tool	Energia and MATLAB	
Data Analysis Tool	WEKA	
Sample Dataset	10291 instances for analysis and 623 instances for validation	
Classifier	Decision Table	
Accuracy (Worst Case)	97.9%	

Conclusion and Future Research

 A framework based on features, for human activity monitoring system to keep track of physiological health of friends and family.

• This method helps in improving the overall calibration of the activity monitoring system.

• The decision table classifier using the data acquired from the sensing module yields 97.9% accuracy.

Thank You !!!

Slides Available at: http://www.smohanty.org

