Energy and Security Tradeoffs in CE Systems

Saraju P. Mohanty University of North Texas, USA.

Email: <u>saraju.mohanty@unt.edu</u> More Info: <u>http://www.smohanty.org</u>

13th Jan 2018

1

Diverse forms of Attacks, following are not the same: System Security, Information Security, Information Privacy, System Trustworthiness, Hardware IP protection, Information Copyright Protection.

CE System Security – Smart Car

ICCE 2018 - Panel - 2 by Prof./Dr. Saraju P. Mohanty

Smart Electronic Systems

Laboratory (SES

UNT SCIENCE

Smart Healthcare - Security and Privacy Issue

NFC Security - Attacks

Source: https://www.slideshare.net/cgvwzq/on-relaying-nfcpayment-transactions-using-android-devices

Smart Electronic Systems

Laboratory (SES

UNT

13th Jan 2018

Memory Attacks

Source: Mohanty 2013, Springer CSSP Dec 2013

Smart Electroni

Laboratory (SE

Counterfeit Hardware – IP Attacks

2014 Analog Hardware Market (Total Shipment Revenue US \$)

Wireless Market \$18.9 billion (34.8%)

Consumer Electronics \$9.0 billion (16.6%)

Industrial Electronics \$8.9 billion (16.5%)

Automotive \$8.5 billion (15.7%)

Data Processing \$6.0 billion (11%)

Source: https://www.slideshare.net/rorykingihs/ihs-electronics-conference-rory-king-october

Top counterfeits could have impact of \$300B on the semiconductor market.

Attacks - Software Vs Hardware

Software Based

- Software attacks communication channels
- Typically from remote
- More frequent
- Selected Software based:
 - Denial-of-Service (DoS)
 - Routing Attacks
 - Malicious Injection
 - Injection of fraudulent packets
 - Snooping attack of memory
 - Spoofing attack of memory and IP address
 - Password-based attacks

Hardware Based

- via Hardware or physical attacks
 - Maybe local
 - More difficult to prevent
 - Selected Hardware based:
 - Hardware backdoors (e.g. Trojan)
 - Inducing faults
 - CE system tampering/jailbreaking
 - Eavesdropping for protected memory
 - Side channel attack
 - CE hardware counterfeiting

Security - Software Vs Hardware

Software Based

- Flexible Easy to use, upgrade
 Hig and update
 End
- Wider-Use Use for all devices in an organization
- Higher recurring operational cost
- Tasks of encryption easy compared to hardware – substitution tables
- Needs general purpose processor
- Can't stop hardware reverse engineering

Hardware Based

- High-Speed operationEnergy-Efficient operation
- Low-cost using ASIC and FPGA
- Tasks of encryption easy compared to software – bit permutation
- Easy integration in CE systems
- Possible security at source-end like sensors, better suitable for IoT
- Susceptible to side-channel attacks
- Can't stop software reverse engineering

Maintaining of Security of Consumer Electronics, CE Systems, IoT, CPS, etc. needs Energy and affects performance.

Hardware Assisted Security

- Software based Security:
 - A general purposed processor is a deterministic machine that computes the next instruction based on the program counter.
 - Software based security approaches that rely on some form of encryption can't be full proof as breaking them is just matter of time.
 - It is projected that quantum computers that use different paradigms than the existing computers will make things worse.
- Hardware-Assisted Security: Security/Protection provided by the hardware: for information being processed by a CE system, for hardware itself, and/or for the CE system.

Hardware Assisted Security

- Hardware-Assisted Security: Security provided by hardware for:
 - (1) information being processed,
 - (2) hardware itself,
 - (3) overall system
- Additional hardware components used for security.
- Hardware design modification is performed.
- System design modification is performed.

RF Hardware Security Digital Hardware Security – Side Channel

Hardware Trojan Protection Information Security, Privacy, Protection

Memory Protection

IR Hardware Security

13th Jan 2018

ICCE 2018 - Panel - 2 by Prof./Dr. Saraju P. Mohanty

Digital Core IP Protection

13th Jan 2018

CE System Energy & Security Tradeoff – System Level

Include additional/alternative hardware/software components and uses DVFS like technology for energy and performance optimization.

Source: Mohanty 2006, TCAS-II May 2006; Mohanty 2009, JSA Oct 2009; Mohanty 2016, Access 2016

Embedded Memory Security and Protection

On-Chip/On-Board Memory Protection

Source: Mohanty 2013 and Springer CSSP Aug 2013

NFC Security

Laboratory (SES

UNT

Trojan Secure Digital Hardware Synthesis

33

Digital Hardware Synthesis to Prevent Reverse Engineering

Smart Electronic

Laboratory (SES

Thank You !!! Slides Available at: http://www.smohanty.org

Hardwares are the drivers of the civilization, even softwares need them.

