Reconfigurable Robust Hybrid Oscillator Arbiter PUF for IoT Security based on DL-FET

V. P. Yanambaka¹, S. P. Mohanty², E. Kougianos³, P. Sundaravadivel⁴ and J. Singh⁵ NanoSystem Design Laboratory (NSDL, http://nsdl.cse.unt.edu) University of North Texas, Denton, TX 76203, USA.^{1,2,3,4} PDPM IIIT Jabalpur, India⁴.

Email: vy0017@unt.edu¹, saraju.mohanty@unt.edu², elias.kougianos@unt.edu³, ps0374@unt.edu⁴, jawar@iiitdmj.ac.in⁵

UNT

Outline of the talk

UNT

- IoT and Attacks
- Novel Contributions

- Physical Unclonable Functions
- Reconfigurable Architecture
- Results
- Conclusion and Future Research

Internet of Things

Security in the Internet of Things

Nano 100 1

UNIVERSITY OF NORTH TEXAS' UNT

Novel Contributions

- Two designs of Reconfigurable Hybrid Oscillator
 Arbiter Physical Unclonable Functions are
 Implemented using DL-FETs.
- To the authors' best knowledge, this is the first paper using DL-FETs.

What is PUF ?

Physical Unclonable Functions (PUFs) is based on the idea that even though the mask and manufacturing process is the same among different ICs, each IC is slightly different due to the manufacturing variability.^[1]

[1] C. Herder, M. D. Yu, F. Koushanfar and S. Devadas, "Physical Unclonable Functions and Applications: A Tutorial," in *Proceedings of the IEEE*, vol. 102, no. 8, pp. 1126-1141, Aug. 2014.

UN

Why PUF?

Strong authentication

- Uniqueness
- Unclonability

Unclonable randomness !!

PUF

Advantage of PUF

- PUF architectures are composed of simple digital circuits which consume less area and power.
- It does not require expensive cryptographic hardware or encryption algorithms.

It is very difficult to change physical characteristics of the IC.

How PUF Works

npiv

láb

UNIT UNIVERSITY

How PUF Works

Types of PUF

Types of PUF

Strong PUF • Optical PUF • Arbiter PUF

Weak PUF• RO PUF• SRAM PUF

DL-FET Based Conventional RO PUF

UNIVERSITY OF NORTH T

Speed Optimized Hybrid Oscillator Arbiter PUF

erign

láboratory

UNIVERSITY OF NORTH TE

UNT

Power Optimized Hybrid Oscillator Arbiter PUF

erign

láboratory

UNIT UNIVERSITY

Configuration Module

Figure of Merits

- Hamming Distance : The hamming distance between two keys should be 50%.
- Reliability : If the same PUF is run with the same challenge input, with environment variations, the output key should not change – Hamming distance should be 0.

Figure of Merits

- Average Power consumption : Power Consumed by the design.
- Randomness : Randomness is the number of 0's and 1's present in the output key. Ideally it should be 50% of both.

Inter PUF Hamming Distance of Speed Optimized Hybrid Oscillator Arbiter PUF

UNIVERSITY

UNT®

Inter PUF Hamming Distance of Power Optimized Hybrid Oscillator Arbiter PUF

Intra PUF Hamming Distance of Speed Optimized **Hybrid Oscillator Arbiter PUF**

UNIVERSITY

Intra PUF Hamming Distance of Power Optimized Hybrid Oscillator Arbiter PUF

Randomness

Average Power of Speed Optimized Hybrid Oscillator Arbiter PUF

Research Works	Technology	Architecture Used	Average Power Consumed	Hamming Distance (%)
Rahman et al. [17]	90nm CMOS			50
Maiti et al. [9]	180nm CMOS	Ring Oscillator		50.72
Sahoo et al. [18]	90nm CMOS	Ring Oscillator		45.78
Yanambaka et al. [16]	32nm FinFET	Hybrid Oscillator Arbiter	175.5 μW	47.31
This paper (Power Optimized)	10 nm DL-FET	Reconfigurable Hybrid Oscillator Arbiter	143.3 μW	47.0
This paper (Speed Optimized)	10nm DL-FET	Reconfigurable Hybrid Oscillator Arbiter	167.5 μW	48.0

Ng

UNT

UNIVERSITY

npi

UNT

$_{25}$ green light to greatness.

Conclusion and Future Research

- This paper presents two designs of reconfigurable hybrid oscillator arbiter PUFs, a speed optimized and a power optimized design using DL-FETs.
- A fair comparison of the two technologies, FinFET and DL-FETs is presented to show the power reduction using these transistors.
- As a future research, an ultra low power design of PUF can be implemented.

 $\frac{1}{26}$ green light to greatness.

THANK YOU

