Dopingless Transistor based Hybrid Oscillator Arbiter Physical Unclonable Function

V. P. Yanambaka<sup>1</sup>, S. P. Mohanty<sup>2</sup>, E. Kougianos<sup>3</sup>, P. Sundaravadivel<sup>4</sup> and J. Singh<sup>5</sup> NanoSystem Design Laboratory (NSDL, http://nsdl.cse.unt.edu) University of North Texas, Denton, TX 76203, USA.<sup>1,2,3,4</sup> PDPM IIIT Jabalpur, India<sup>4</sup>.

Email: vy0017@unt.edu<sup>1</sup>, saraju.mohanty@unt.edu<sup>2</sup>, elias.kougianos@unt.edu<sup>3</sup>, ps0374@unt.edu<sup>4</sup>, jawar@iiitdmj.ac.in<sup>5</sup>

UNT

### **Outline of the talk**

- IoT and Attacks
- Novel Contributions
- Physical Unclonable Functions
- Proposed Designs of Physical Unclonable Function

UNT

Results and FoMs

A green light to greatness.

Conclusion and Future Research

# **Internet of Things**

In the IoT era,
the number of
devices connected
to the internet is
exponentially

A green light to greatness.

increasing.



# **Security in the Internet of Things**



UNT UNIVERSITY

# **Security in the Internet of Things**



Nano 100 1

UNIVERSITY OF NORTH TEXAS' UNT

# **Novel Contributions**

- Two designs of Hybrid Oscillator Arbiter Physical Unclonable Functions are implemented using DL-FETs.
- Comparative analysis with FinFETs is presented for the same designs.
- To the authors' best knowledge, this is the first paper using DL-FETs.

 $_{\mathbf{6}}$ A green light to greatness.



# **Technology Scaling**



# **Dopingless Transistor**



Symbols of n-type and

p-type Dopingless FET



<sup>8</sup>A green light to greatness.

# **Dopingless Transistor**

- An undoped single uniform structure is used from source to drain.
- In the DL-FET, a thin intrinsic silicon nanowire is used between metal electrodes and gate, source and drain regions.
- The p-type and the n-type doping regions can be formed using work function engineering inside the undoped thin silicon.

JÍNT

# **Dopingless Transistor**

| Parameters                                  | <b>Dopingless FET</b> |  |
|---------------------------------------------|-----------------------|--|
| Silicon Film Thickness $(T_{si})$           | 10 nm                 |  |
| Effective Oxide Thickness (EOT)             | 1 nm                  |  |
| Gate Length $(L_g)$                         | 20 nm                 |  |
| Width (W)                                   | $1 \ \mu m$           |  |
| Source/Drain extension                      | 10 nm                 |  |
| Metal work function/doping for source/drain | 3.9 EV (Hafnium)      |  |
| Metal work function/doping for gate         | 4.66 eV (TiN)         |  |
| Doping                                      | $10^{15}/cm^{3}$      |  |

Nanos

lábora

UNIVERSITY OF NORTH TEXAS"

erign

UNT

### **Physical Unclonable Function**

- Physical Unclonable Functions are simple primitives for security.
- PUFs are easy to build and impossible to duplicate (theoretically).
- Input and Output are called Challenge Response Pair.



### **How PUF Works**



With the same input to different copies of the same circuit, different outputs are obtained, each unique to each circuit.

UN

### **How PUF Works**





### **Types of PUF**



UNIVERSITY

**UNT**<sup>14</sup>

### **DL-FET Based Conventional RO PUF**



láboratory

UNIVERSITY OF NORTH T

### **Speed Optimized Hybrid Oscillator Arbiter PUF**



UNT

UNIVERSITY

UNT

### **Power Optimized Hybrid Oscillator Arbiter PUF**



Nano

láb

UNI

UNIVERSITY

npive

# **Figure of Merits**

- Hamming Distance : The hamming distance between two keys should be 50%.
- Reliability : If the same PUF is run with the same challenge input, with environment variations, the output key should not change – Hamming distance should be 0.

**UNT** 

• Average Power consumption.

 $\mathbf{A}$  green light to greatness.

### **Frequencies of Ring Oscillators**



#### Inter PUF Hamming Distance of Speed Optimized Hybrid Oscillator Arbiter PUF



#### Inter PUF Hamming Distance of Power Optimized Hybrid Oscillator Arbiter PUF



#### Intra PUF Hamming Distance of Speed Optimized Hybrid Oscillator Arbiter PUF



#### Intra PUF Hamming Distance of Power Optimized Hybrid Oscillator Arbiter PUF



#### Average Power of Speed Optimized Hybrid Oscillator Arbiter PUF



#### Average Power of Power Optimized Hybrid Oscillator Arbiter PUF



### **Characterization Table for PUF Designs**

| Power Optimized Hybrid Oscillator Arbiter PUF |                 |                              |  |  |  |
|-----------------------------------------------|-----------------|------------------------------|--|--|--|
| Parameter                                     | FinFET          | <b>Dopingless Transistor</b> |  |  |  |
| Average Power                                 | 175.5 μW        | 121.3 µW                     |  |  |  |
| Hamming Distance                              | 50.1 %          | 48                           |  |  |  |
| Speed Optimized Hybrid Oscillator Arbiter PUF |                 |                              |  |  |  |
| Average Power                                 | $251.5 \ \mu W$ | $151 \ \mu W$                |  |  |  |
| Hamming Distance                              | 48.3 %          | 50 %                         |  |  |  |

UNIVERSITY OF NORTH TH npin

UNT



#### Average Power of Speed Optimized Hybrid Oscillator Arbiter PUF

| Research Works                            | Technology              | Architecture<br>Used           | Average<br>Power<br>Consumed | Hamming<br>Distance<br>(%) |
|-------------------------------------------|-------------------------|--------------------------------|------------------------------|----------------------------|
| Rahman et al. [23]                        | 90nm CMOS               |                                |                              | 50                         |
| Maiti et al. [19]                         | 180nm CMOS              | Traditional Ring<br>Oscillator |                              | 50.72                      |
| Suh et al. [24]                           |                         |                                |                              | 46.15                      |
| Maiti et al. [18]                         |                         |                                |                              | 47.31                      |
| Yanambaka et al.<br>(Power Optimized)[20] | 32nm FinFET             | Current Starved<br>Oscillator  | 175.5 μW                     | 50.1                       |
| Yanambaka et al.<br>(Power Optimized)[10] | 32nm FinFET             | Traditional Ring<br>Oscillator | 285.5 μW                     | 50.9                       |
| This paper<br>(Power Optimized)           | 10 nm Dopingless<br>FET | Hybrid Oscillator<br>Arbiter   | 121.3 μW                     | 48.0                       |
| This paper<br>(Speed Optimized)           | 10nm Dopingless<br>FET  | Hybrid Oscillator<br>Arbiter   | 151 µW                       | 50.0                       |

Nana

UNIT UNIVERSITY OF NORTH TI rign

UNT

 $\frac{2}{2}$  green light to greatness.

# **Conclusion and Future Research**

- This paper presents two designs of hybrid oscillator arbiter PUFs, a speed optimized and a power optimized design using DL-FETs.
- A fair comparison of the two technologies, FinFET and DL-FETs is presented to show the power reduction using these transistors.
- As a future research, an ultra low power design of PUF can be implemented.

 $_{\mathbf{28}}$  green light to greatness.



# THANK YOU

