I-Stress: A Stress Monitoring System using the Internet of Things (IoT)

Laavanya Rachakonda¹, Prabha Sundaravadivel², Saraju P. Mohanty³, Elias Kougianos⁴ Nano System Design Laboratory (http://nsdl.cse.unt.edu), University of North Texas, USA. Email: {rl0286¹,ps0374²,saraju.mohanty³, eliask⁴}@unt.edu

- chemicals such as adrenaline and cortisol.
- disorder (BPD).

- activities, still remains a challenge.
- phobias generally affect the human body.

- wirelessly.
- normal stress and high stress.

High-Level Architecture of I-Stress System

26th Oct 2017

Proposed Stress Detection System

IEEE MetroCon 2017

Normal Stress	High Stress
75-100	101-120
12-15	15-20
90-97	80-90

Normal Stress	High Stress
75-100	101-120

Accelerometer Hu Sensor Reading 0 1

80

TR Value	AMR Value	HR Value	TR Value	AMR Value	HR Value
85	90	97	TR	AMR	HR
Analyze	nalyze 90.6667		Analyze	Value	

- has been derived.

69, Oct 2017.

[2] E. Kougianos, S. P. Mohanty, G. Coelho, U. Albalawi, and P. Sundaravadivel, "Design of a High-Performance System for Secure Image Communication in the Internet of Things," IEEE Access, vol. 4, pp. 1222–1242, 2016. [3] S. P. Mohanty, Nanoelectronic Mixed-Signal System Design. McGraw- Hill Education, 2015.

Results

Logical Analysis

midity Sensor Reading	Temperature Sensor Reading	Stress Level			
0	0	0			
0	1	0			
1	0	0			
1	1	1			
0	0	0			
0	1	1			
1	0	1			
1	1	1			

60 AMR Fuzzy Logic Controller

GUI Implementation

Conclusion

The implementations in Fuzzy controller shows the surface plot with variations of stress which can be experienced by a person. • By using the GUI implementation, the accurate stress parameter

80

This stress monitoring system allows the users an easy interface.

References

[1] H. Thapliyal, V. Khalus, and C. Labrado, "Stress detection and management: A survey of wearable smart health devices," IEEE Consumer Electronics Magazine, vol. 6, no. 4, pp. 64-