iVAMS: A Paradigm Shift System Simulation Framework for the IoT Era

Saraju P. Mohanty NanoSystem Design Laboratory (NSDL) Dept. of Computer Science and Engineering University of North Texas, Denton, TX 76203, USA. Email: saraju.mohanty@unt.edu

Smart Cities

70% of the world population will live in urban areas by 2050.

Smart Cities ← Cities + ICT + Smart Components

Refer: http://smartcities.ieee.org

UNT

Smart Health Care

UNT

Consumer Electronics Demand More and More Energy

Smart Home

What Makes Smart Cities Feasible?

UNT

Internet of Things: Challenges ...

- Massive Scaling
- Architecture and Dependencies
- Creating Knowledge and Big Data
- Robustness
- Security and Privacy
- Energy Consumption
- Design and Operation Cost

75 billion connecting devices by 2020.
Eventually trillions of things.

Internet of Things: Challenges

- Traditional controllers and processors do not meet IoT requirements, such as multiple sensor, communication protocol, energy consumption, and security requirements.
- Existing tools are not enough to meet challenges like time-to-market, complexity, design cost of IoT.
- Can a framework be developed for simulation, verification, and optimization:
 - of individual (multidiscipline) "Things"
 - of IoT Components
 - of IoT Architecture

How to Handle DfX in IoT Design?

UNT

iVAMS code : OP-AMP Example

```
function real NN metamodel; ... ...
  integer \alpha_1, \beta_2, b_1, b_2, i, j, readfile, ...; real w, b, v, u;
  // Read metamodel weights and bias from text files.
  // \alpha_1, \beta_2, b_1, and b_2.
  \dots v = 0.0;
  for (j = 0; j < nl; j = j + 1)
 begin
     u = 0.0;
     for (i = 0; i < size x; i = i + 1)
     begin
       readfile = $fscanf(w1, "%e", w); u = u + w * x[i];
     end
     readfile = $fscanf(w2,"%e",w); readfile = $fscanf(b1,"%e",b);
       v = v + w * tanh(u + b);
  end
```

```
readfile = $fscanf(b2, "%e", b);
NN metamodel = v + b; ...
```

end function

What are Metamodels?

 "Model of a model" -- Metamodels are mathematical function(s) used to represent the computer simulation models – e.g. polynomial functions, DOE predictive functions, neural networks, and Kriging interpolation:

$$\hat{F}(x_n) = F(x_n) + \varepsilon \approx F(x_n)$$

Selected Characteristics of Metamodels Accuracy Robustness Efficiency Transparency Simplicity

iVAMS: Polynomial Metamodel (POM)

The OP-AMP characteristics are estimated using POlynomial Metamodel (POM).

OP-AMP POM Generation

The goal is to find the coefficients for the polynomials.

UNI

iVAMS: Accuracy Analysis for OP-AMP

28

Case Study Electronic Design: PLL

iVAMS: Accuracy Analysis for PLL

 iVAMS is capable of layout-accurate PLL design characteristics such as, center frequency, power dissipation, and jitter.

iVAMS : AC Analysis for Comparison

38

Kriging Bootstrapping NN Metamodel

Ordinary Kriging Metamodels

For a Sense Amplifier Design

Metamodel Comparison: Polynomial Vs Nonpolynomial

180nm CMOS PLL with Target Specs: f = 2.7GHz, P = 3.9mW, $8.5\mu s$.

Figures-of- Merits (FoM)	Polynomial # of Coefficients RMSE		Nonpolynomial (Neural Network)
Frequency	48	77.9 MHz	48 MHz
Power	50	2.6 mW	0.29 mW
Locking Time	56	1.9 μs	1.2 μs

- 56% increase in accuracy over polynomial metamodels.
- On average 3.2% error over golden design surface for NN metamodels.
- Nonpolynomial is more suitable for large design.

Nonpolynomial Metamodel Accuracy

Sampling Techniques: 45nm Ring Oscillator Circuit (5000 points)

Monte Carlo

MLHS

LHS

DOE

What do we with iVAMS ?

Use for accurate design verification
Use for ultra-fast design optimization

iVAMS-Based Ultrafast Design Flow

Comparison of the Running Time: 45nm RO Optimization

Optimizationwithoutmetamodels:the tabu searchoptimization is faster by $\sim 1000 \times$ than the exhaustive search and $\sim 4 \times$ faster than the simulatedannealing optimization.

Optimization with metamodels: the simulated annealing optimization is faster by ~1000× than the exhaustive search and ~6× faster than the tabu search optimization.

Optimization in PLL: Poly Vs NN

Bee Colony Optimization Results

FoM	Polynomial Metamodel	NN Metamodel
Average Power	3.9 mW	3.9 mW
Frequency	2.69 GHz	2.70 GHz

Bee Colony Optimization Time Comparison

Algorithm	Circuit Netlist	Polynomial Metamodel	NN Metamodel
Bee Colony (100 iterations)	<pre>#bees(20) * 5 min * 100 iteration = 10,000 minutes = 7 days (worst case)</pre>	5 mins	0.12 mins
Metamodel Generation	0	11 hours for LHS + 1 min creation	11 hours for LHS+ 10mins training and verification.

OP-AMP: Optimization Results

Performance	Constraint	Optimal _{POM}	Optimal _{SCH}
A_0 (dB)	> 43	56.4	52.8
BW (kHz)	> 50	58.9	85.5
PM (degree)	> 70	84.4	87.7
SR (mV/ns)	> 5	7.1	8
	Objective		
P_D (μ W)	~ 65	65.5	68.1

Performance	Optimal _{SCH}	Optimal _{POM}
Power Reduction	×3.71	×3.86
Number of iterations	1200	1200
Computation Time	12.5 h	2.6 s
Normalized Speed	1	×17120

UNT

Ongoing: iVAMS for other "Things"

Secure Digital Camera: For Secure Imaging/Video

56

Ongoing: iVAMS for other "Things"

■ Nano-Electro-Mechanical-Systems (NEMS) → Smart Health Care

Conclusions

- IoT components and "Things" have multifold challenges.
- Intelligent Verilog-AMS (iVAMS) is a unique framework for IoT components simulation, verification, and optimization.
- iVAMS can be used for individual components and architecture following hierarchical approach.
- Use of iVAMS and optimization algorithm speed up the design-space exploration for the design.
- Polynomial metamodels are easier create but can be applied for small designs.
- Increase in accuracy is observed using feed forward neural network over polynomial metamodels.
- Kriging and NN metamodels can handle large designs.
- iVAMS for "multidiscipline" "things" needs research.

Some Advertisement

Nanoelectronic **Mixed-Signal** System Design Saraju P. Mohanty

2 5 T

- Winner of the Association of American Publishers' 2016 PROSE Award in the Textbook in Physical Sciences & Mathematics category.
- Cutting-edge nanoelectronic mixedsignal system design methods

Design discusses mixed-signal circuit and system based on existing and emerging design nanoelectronic technologies. The book features coverage of both digital and analog applications using nanoscale CMOS and post-CMOS. Key techniques required for design for excellence and manufacturability are discussed in this practicedriven text.

> Color lecture slides are available. **•**

References

- S. P. Mohanty, U. Choppali, and E. Kougianos, "Everything You wanted to Know about Smart Cities", *IEEE Consumer Electronics Magazine*, July 2016, pp. .
- S. P. Mohanty, Nanoelectronic Mixed-Signal System Design, McGraw-Hill, 2015, ISBN-10: 0071825711, ISBN-13: 978-0071825719.
- J. A. Stankovic, "Research Directions for the Internet of Things", *IEEE Internet of Things Journal*, Volume: 1, Issue: 1, February 2014.
- O. Okobiah, S. P. Mohanty, and E. Kougianos, "Fast Layout Optimization through Simple Kriging Metamodeling: A Sense Amplifier Case Study", *IEEE Transactions on Very Large Scale Integration Systems*, Volume 22, Issue 4, April 2014, pp. 932--937.
- S. P. Mohanty and E. Kougianos, "Incorporating Manufacturing Process Variation Awareness in Fast Design Optimization of Nanoscale CMOS VCOs", *IEEE Transactions on Semiconductor Manufacturing*, Volume 27, Issue 1, February 2014, pp. 22--31.
- O. Garitselov, S. P. Mohanty, and E. Kougianos, "A Comparative Study of Metamodels for Fast and Accurate Simulation of Nano-CMOS Circuits", *IEEE Transactions on Semiconductor Manufacturing*, Vol. 25, No. 1, Feb 2012, pp. 26--36.
- O. Okobiah, S. P. Mohanty, and E. Kougianos, "Exploring Kriging for Fast and Accurate Design Optimization of Nanoscale Analog Circuits", in *Proceedings of the 13th IEEE Computer Society Annual Symposium on VLSI*, 2014, pp. 244--247.
- G. Zheng, S. P. Mohanty, E. Kougianos, and O. Okobiah, "Polynomial Metamodel Integrated Verilog-AMS for Memristor-Based Mixed-Signal System Design", in *Proceedings of the 56th IEEE International Midwest Symposium on Circuits & Systems*, 2013, pp. 916--919.
- G. Zheng, S. P. Mohanty, E. Kougianos, and O. Okobiah, "iVAMS: Intelligent Metamodel-Integrated Verilog-AMS for Circuit-Accurate System-Level Mixed-Signal Design Exploration", in *Proceedings of the 24th IEEE International Conference on Application-specific Systems, Architectures and Processors*, 2013, pp. 75--78.

rign

Thank You !!!

Slides Available at: http://www.smohanty.org