Multi-Swarm Optimization of a Graphene FET Based Voltage Controlled Oscillator Circuit

E. Kougianos^{1,} S. Joshi² and S. P. Mohanty³ NanoSystem Design Laboratory (NSDL, http://nsdl.cse.unt.edu) University of North Texas, Denton, TX 76203, USA.^{1,2,3} Email: eliask@unt.edu¹, shitaljoshi@my.unt.edu², and saraju.mohanty@unt.edu³

> Presented By Shital Joshi

Table of contents

Introduction

Related Prior Research

Novel Contributions

Design and Characterization of a Graphene LC-VCO

□ Proposed Design Optimization flow for GFET Based LC-VCO

Multi Swarm Optimization (MSO) Technique

Experimental Results

Characteristics of GFET based LC-VCO

➢Optimal GFET based LC-VCO

Conclusions and Directions for future research

References

Introduction

CMOS suffer a fundamental limit beyond 10 nm technology.

►Non scalability of -

Thermal voltage Threshold voltage Supply voltage

Beyond 10 nm node, graphene is a viable solution

≻High field-effect mobility (>15000 cm²/V s)

≻High Fermi velocity (10⁸ cm/s)

Related Prior Research

Graphene based devices

- ≻LNA [4],
- ≻Mixer [5],
- ≻ High frequency graphene amplifier [6],
- ➢Frequency doubler [7]
- >LC-VCO [8]

□Various optimization techniques for analog circuits

- ➤Swarm optimization[9],
- ≻Bee colony optimization [10], and
- ≻Simulated annealing[11]

Novel Contributions

□ First attempt to propose a design flow for GFET based cross coupled version of an LC oscillator.

A new optimization algorithm called multi-swarm optimization (MSO) is used in the design flow

Gives proper sizing of the GFET device to achieve maximum frequency.

Design and Characterization of a Graphene LC-VCO

I-V Curves

Fig. 2. I-V Curve of N-type and P-type GFET around operating region

UNT

Nano

lábo

UNIVERSITY

UNT

Proposed Design Optimization flow for GFET Based LC-VCO

LC-VCO Characteristics	Estimated Values	
f _{center}	2.56 GHz	
V _{tank,p-p}	0.8 V	
I _{bias}	0.77 mA	
Tuning Range	4.88%	
Phase Noise (1 MHz offset)	-88.25 dBc/Hz	

Table 2. Baseline GFET based LC-VCO

Tuning Range and Phase Noise

Fig. 3. Tuning range and Phase noise Characteristics of the baseline GFET based LC-VCO

Nano!

láboratory

TEXAS

UNIT UNIVERSITY

Continued...

LC-VCO Parameters	Parameter Type	Minimum Value	Maximum Value
L	Design Variable	3 µm	7 μm
W	Design Variable	1.4 μm	2.2 μm
Power Dissipation	Design Constraint	Minimize	16 mW
Phase Noise	Design Constraint	Minimize	-80 dBc/Hz

Table 4. GFET based LC-VCO Design Variable and Constraints

Continued...

(a) Initial Particles, x

(b) Particles after 20th iteration

Ngn

laboratory

UNIVERSITY OF NORTH T

UNT

Fig. 4. GFET based LC-VCO Optimization

Optimized Frequency

Fig. 4. GFET based LC-VCO Optimization (Continued...)

UNT

UNIVERSITY

Experimental Results – Quality Factor

Fig. 5. Quality Factor of the GFET based LC-VCO

Ngn

Frequency vs. length and width

Fig. 6. Frequency of the GFET based LC-VCO vs Channel length and Channel width

Power dissipation vs. length and width

Fig. 7. Power Dissipation of the GFET based LC-VCO vs Channel length and Channel width

Phase Noise vs. length and width

Fig. 8. Phase Noise of the GFET based LC-VCO vs Channel length and Channel width

Optimized response

Fig. 9. Tuning Range and Phase Noise of Optimized GFET based LC-VCO

Optimal GFET based LC-VCO

LC-VCO Parameters	Obtained Values	Remarks	
Channel Length	3.35 μm	3 – 7 μm	Optimization Variables
Channel Width	1.82 μm	1.4 - 2.2 μm ——	
Power Dissipation	11.74 mW	Max. 16 mW	Optimization Constraints
Phase Noise (1 MHz offset)	-92.92 dBc/Hz	Max80 dBc/Hz	
Frequency	2.58 GHz	2.56 GHz	Initially Designed
Tuning Range	4.62%		
V _{tank,p-p}	0.75 V		
l _{bias}	0.83 mA		

Table 5. Characteristics of the Optimal LC-VCO

Conclusions and Directions for Future Research

- Design constraints of phase noise and power dissipation are well met.
- The power dissipation and phase noise are 26.6% and 16.2% below their maximum values.
- As a future work, a surrogate model of the circuit will be created which will then be used to perform optimization instead of using a netlist.
- Parasitic aware design and multi-objective optimization will be performed to obtain the final layout.

References

- I. J. Umoh and T. J. Kazmierski, "VHDL-AMS model of a dual gate graphene FET," in Forum on Specification and Design Languages (FDL), 2011, pp. 1–5.
- 2. F. Schwierz, "Graphene transistors," Nature Nanotechnology, vol. 5, pp. 487–496, May 2010.
- 3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, no. 5696, pp. 666–669, 2004.
- 4. S. Das and J. Appenzeller, "An All-Graphene Radio Frequency Low Noise Amplifier," in Proceedings of IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2011, pp. 1–4.

Continued...

- 5. H. Wang, A. Hsu, J. Wu, J. Kong, and T. Palacios, "Graphene-Based Ambipolar RF Mixers," IEEE Electron Device Letters, vol. 31, no. 9, pp. 906–908, 2010.
- S. J. Han, K. A. Jenkins, A. Valdes Garcia, A. D. Franklin, A. A. Bol, and W. Haensch, "High-Frequency Graphene Voltage Amplifier," NanoLetters, vol. 11, no. 9, pp. 3690–3693, 2011.
- M. E. Ramon, K. N. Parrish, S. F. Chowdhury, C. W. Magnuson, H. C. P. Movva, R. S. Ruoff, S. K. Banerjee, and D. Akinwande, "Three- Gigahertz Graphene Frequency Doubler on Quartz Operating Beyond the Transit Frequency," IEEE Transactions on Nanotechnology, vol. 11,no. 5, pp. 877–883, sept. 2012.
- 8. M. A. Khan, S. P. Mohanty, and E. Kougianos, "Statistical Process Variation Analysis of a Graphene FET based LC-VCO for WLAN Applications," in Proceedings of the 15th International Symposium on Quality Electronic Design, 2014, pp. 569–574.

^{07/09/2015} A green light to greatness.

Continued...

- M. fakhfakh, Y. Cooren, A. Sallem, M. Loulou and P. Siarry, "Analog Circuit Design Optimization Through The Particle Swarm Optimization technique", Analog Integrated Circuits and Signal Processing, vol. 63, no. 1, pp. 71-82, April 2010.
- O. Garitselov, S. P. Mohanty and E. Kougianos, "Accurate polynomial metamodeling-based ultra-fast bee colony optimization of a nano-cmos phase-locked loop", Journal of Low Power Electronics, vol. 8, pp. 317-328, 2012.
- 11. G. G. E. Gielen, H. C. C. Walsch and W. M. C. Sansen, "Analog Circuit Design Optimization Based on Symbolic Simulation and Simulated Annealing", IEEE Journal of Solid-State Circuits, vol. 25, pp. 707-713, 1990.

^{07/09/2015} A green light to greatness.

Thank you !!!

^{07/09/2015} A green light to greatness.

