
Ultra-Fast Variability-Aware 

Optimization of Mixed-Signal Designs 

using Bootstrapped Kriging

S. P. Mohanty1, E. Kougianos2, and V. P. Yanambaka3

NanoSystem Design Laboratory (NSDL, http://nsdl.cse.unt.edu) 

University of North Texas, Denton, TX 76203, USA.1,2,3

Email: saraju.mohanty@unt.edu1, elias.kougianos@unt.edu2 and 

VenkataPrasanthYanambaka@my.unt.edu3

1



Outline of the talk

 Background and Motivation

 Novel Contributions

 Process Variation Aware Ultra-Fast Design

Optimization Flow for Mixed Signal Circuits

 PSO Algorithm

 Conclusions

2



Nanoelectronics : Challenges
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Nanoscale Variability : Overall
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Nanoelectronics Variability ?

 Discrepancy between chip parameters --

Design Time versus Actual Post Fabrication

Source: http://apcmag.com/picture-gallery-how-a-chip-is-made.htm
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Research Questions

 How process variations effects can be

captured in the design cycle?

 How process variation effects can be

mitigated in the design cycle?

 How to achieve the above two with minimal

design cycle consumed?
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Standard Design Flow – Very Slow
 Standard design flow requires multiple

manual iterations on the back-end

layout to achieve parasitic closure

between front-end circuit and back-end

layout.

 Longer design cycle time.

 Error prone design.

 Higher non-recurrent cost.

 Difficult to handle nanoscale

challenges.
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Related Research: Fast Exploration
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Related Research: Metamodels

 One of the most common and reliable method used is

Polynomial Regression

 Non-Polynomial metamodels built from Neural Networks

have been reported to surpass Polynomial metamodels

 Weight training process is critical in developing Neural

Network models

 Kriging training for Neural Networks provides tradeoff

between the accuracy of Kriging and scalability of NN

models
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Novel Contributions of This Paper

 Fast and accurate physical design and optimization

 Adaption of PSO algorithm for nano-CMOS based

process variation aware optimization

 Case study exploration using a 180nm CMOS based

PLL design
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Process Variation Aware Ultra-Fast Design 

Optimization Flow for Mixed-Signal Circuits

11



Proposed Design Optimization Flow
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Proposed Design Optimization Flow

Part - A
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 First phase consists of baseline logical and physical

design

 Baseline is simulated for functional verification

 This verification also serves to characterize circuit design

objectives



Proposed Design Optimization Flow

Part - B
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 This phase involves creation of process variation aware

metamodel of the circuit design



Proposed Design Optimization Flow

Part - C
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 This phase is process aware design optimization

 The optimization algorithm is used with the created

metamodel and design objectives to optimize the design



 Kriging takes into account correlations between the input

parameters in performance point prediction

 Hence it is very appealing and lends to high accuracy

 Use of Neural Networks can generate ultra-fast and

accurate metamodels

 To ensure time efficiency and accuracy, we present a

model that combines Kriging accuracy with NN speed
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Proposed Kriging based NN 

metamodel generation



Proposed Kriging based NN 

metamodel generation flow
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 PSO is a type of evolutionary swarm intelligence

algorithm for numerical optimization problems.

 The optimization problem implemented is to minimize

power consumption of PLL circuit

 Process aware optimization involves minimizing the

mean and standard deviation of optimal power

consumption
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Particle Swarm Optimization

Algorithm



Flow Diagram for PSO Algorithm
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Experimental Steps

20



Case Study Circuit: 180nm PLL

Block diagram of a PLL.

PLL for 180nm.

 PLL circuit is characterized for frequency,

power, vertical and horizontal jitter (for simple

phase noise), and locking time.

 Metamodels are created for each FoM from the

same sample set.

 21 design parameters used.

21



22

Simulation Results

SPICE 

Netlist

Kriging-ANN Metamodel

Before 

Optimization

After

Optimization

Value Value Error

(%)

Value Error

(%)

Power (PPLL)
Mean(µ) 2.48 mW 2.40 mW 3.33 2.35mW 2.08

St.Dev.(σ) 0.42 mW 0.34 mW 19.05 0.39mW 7.14

Frequency (FPLL)
Mean(µ) 2.66 GHz 2.51 GHz 5.64 2.78GHz 4.51

St.Dev.(σ) 10.95 MHz 41.93MHz 282.92 16.92MHz 54.52

Locking Time (LckPLL)
Mean(µ) 5.51 µs 5.11 µs 7.26 5.21 µs 5.44

St.Dev.(σ) 0.72 µs 0.44 µs 38.88 0.42 µs 41.67

Jitter (JPLL)
Mean(µ) 16.80 ns 14.69 ns 10.25 17.72ns 5.47

St.Dev.(σ) 1.32 ps 4.50 ps 240.91 0.33ps 75



 Presented a statistical optimization design flow

combining Kriging and Neural Network based

metamodeling with PSO based algorithm

 The design technique was illustrated through a PLL

circuit

 Research will expand for design optimization of various

analog blocks in future
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Conclusions



Thank you !!!
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